Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
118845491512376909830311 ~2010
118850747032377014940711 ~2010
118853319592377066391911 ~2010
118859474417131568464711 ~2011
118865537931152...57692915 2025
118866152392377323047911 ~2010
118866863032377337260711 ~2010
118870465432377409308711 ~2010
118875183719510014696911 ~2011
118875382312377507646311 ~2010
1188805440711888054407112 ~2011
118883869499510709559311 ~2011
118890745312377814906311 ~2010
118892251432377845028711 ~2010
118893934432377878688711 ~2010
1188994026154693725200712 ~2013
118900430512378008610311 ~2010
118901850537134111031911 ~2011
118912083832378241676711 ~2010
1189140924711891409247112 ~2011
118921890977135313458311 ~2011
118922590192378451803911 ~2010
1189240573911892405739112 ~2011
118925615632378512312711 ~2010
118926092992378521859911 ~2010
Exponent Prime Factor Dig. Year
118928591032378571820711 ~2010
118934707312378694146311 ~2010
118940613832378812276711 ~2010
118941308512378826170311 ~2010
118945149177136708950311 ~2011
118945938112378918762311 ~2010
118950064079516005125711 ~2011
118950371632379007432711 ~2010
118956968632379139372711 ~2010
1189620257316654683602312 ~2012
118964622712379292454311 ~2010
118968007377138080442311 ~2011
118968581632379371632711 ~2010
118979996512379599930311 ~2010
118989549112379790982311 ~2010
118990811632379816232711 ~2010
118993333019519466640911 ~2011
118999759079519980725711 ~2011
118999799392379995987911 ~2010
119006964712380139294311 ~2010
119008128832380162576711 ~2010
119008824592380176491911 ~2010
119010631312380212626311 ~2010
119014646392380292927911 ~2010
119015371079521229685711 ~2011
Exponent Prime Factor Dig. Year
119018234632380364692711 ~2010
119024026792380480535911 ~2010
119032662832380653256711 ~2010
1190330629121425951323912 ~2012
119045545912380910918311 ~2010
119053873792381077475911 ~2010
119056838777143410326311 ~2011
119064657177143879430311 ~2011
119064855112381297102311 ~2010
119065621312381312426311 ~2010
119070274019525621920911 ~2011
119073154937144389295911 ~2011
119080812712381616254311 ~2010
119081948992381638979911 ~2010
119085334432381706688711 ~2010
119089518112381790362311 ~2010
119091036592381820731911 ~2010
119095137177145708230311 ~2011
119104212537146252751911 ~2011
119105850179528468013711 ~2011
119106736937146404215911 ~2011
119108031177146481870311 ~2011
119112059512382241190311 ~2010
119112928912382258578311 ~2010
119114296977146857818311 ~2011
Exponent Prime Factor Dig. Year
119115030599529202447311 ~2011
119128481632382569632711 ~2010
119130653891172...34277714 2023
119136423112382728462311 ~2010
119141980912382839618311 ~2010
119148560992382971219911 ~2010
119156382112383127642311 ~2010
119160829337149649759911 ~2011
119161516312383230326311 ~2010
119174226832383484536711 ~2010
119177417992383548359911 ~2010
119180072519534405800911 ~2011
119181002632383620052711 ~2010
119187206992383744139911 ~2010
119189385977151363158311 ~2011
119194457992383889159911 ~2010
119197814032383956280711 ~2010
1191980180957215048683312 ~2013
119198167192383963343911 ~2010
119208583312384171666311 ~2010
119209004512384180090311 ~2010
119214814312384296286311 ~2010
119225666512384513330311 ~2010
119228760712384575214311 ~2010
119232594832384651896711 ~2010
Home
4.724.182 digits
e-mail
25-04-13