Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
93571065231871421304711 ~2009
93572351031871447020711 ~2009
93572455431871449108711 ~2009
935745594143044297328712 ~2012
93574803111871496062311 ~2009
93574889631871497792711 ~2009
93575864935614551895911 ~2010
93582131775614927906311 ~2010
93584695797486775663311 ~2010
93589054311871781086311 ~2009
93589597191871791943911 ~2009
935917635714974682171312 ~2011
93592884231871857684711 ~2009
93594621591871892431911 ~2009
93595062591871901251911 ~2009
93596446311871928926311 ~2009
93599319015615959140711 ~2010
93602809215616168552711 ~2010
93603706191872074123911 ~2009
93604912431872098248711 ~2009
93612847911872256958311 ~2009
93612903591872258071911 ~2009
93614157111872283142311 ~2009
93618331615617099896711 ~2010
93618594591872371891911 ~2009
Exponent Prime Factor Dig. Year
93619558311872391166311 ~2009
93623834511872476690311 ~2009
93627104991872542099911 ~2009
93628911231872578224711 ~2009
93632687277490614981711 ~2010
93634811631872696232711 ~2009
936366235116854592231912 ~2011
93638592831872771856711 ~2009
936409484944947655275312 ~2012
93643088511872861770311 ~2009
93644023431872880468711 ~2009
93654303231873086064711 ~2009
936547329714984757275312 ~2011
93658306791873166135911 ~2009
93663848031873276960711 ~2009
93664289991873285799911 ~2009
93673576191873471523911 ~2009
936892372716864062708712 ~2011
93692368191873847363911 ~2009
93694730511873894610311 ~2009
93698672391873973447911 ~2009
93700001815622000108711 ~2010
93711443815622686628711 ~2010
93716570215622994212711 ~2010
93719380977497550477711 ~2010
Exponent Prime Factor Dig. Year
93728550775623713046311 ~2010
93730111617498408928911 ~2010
93732363111874647262311 ~2009
937360005116872480091912 ~2011
93736925991874738519911 ~2009
93737228631874744572711 ~2009
937402045735621277736712 ~2012
93744843231874896864711 ~2009
93746787777499743021711 ~2010
93762051591875241031911 ~2009
93763269831875265396711 ~2009
93763681911875273638311 ~2009
93764479191875289583911 ~2009
93765570831875311416711 ~2009
93766411191875328223911 ~2009
93770168991875403379911 ~2009
93772169631875443392711 ~2009
93774672591875493451911 ~2009
93774948831875498976711 ~2009
93775013631875500272711 ~2009
93775418697502033495311 ~2010
93781345431875626908711 ~2009
93783047391875660947911 ~2009
93783326335626999579911 ~2010
937863154145017431396912 ~2012
Exponent Prime Factor Dig. Year
93787472391875749447911 ~2009
93791100799379110079111 ~2011
93792207975627532478311 ~2010
93792306111875846122311 ~2009
93794562591875891251911 ~2009
93796720191875934403911 ~2009
93807783711876155674311 ~2009
93809799831876195996711 ~2009
93811003575628660214311 ~2010
93811712031876234240711 ~2009
93813406791876268135911 ~2009
93818308311876366166311 ~2009
93821086431876421728711 ~2009
93822204111876444082311 ~2009
93822215391876444307911 ~2009
93824474991876489499911 ~2009
938245184324394374791912 ~2012
93824676831876493536711 ~2009
93826247631876524952711 ~2009
93828066597506245327311 ~2010
93834895135630093707911 ~2010
938397623313137566726312 ~2011
93845926215630755572711 ~2010
93848318031876966360711 ~2009
93849943191876998863911 ~2009
Home
4.828.532 digits
e-mail
25-06-01