Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
93313130631866262612711 ~2009
93313766991866275339911 ~2009
93314453031866289060711 ~2009
93317481775599048906311 ~2010
93317629911866352598311 ~2009
93322613775599356826311 ~2010
93322693135599361587911 ~2010
93323171991866463439911 ~2009
93326382975599582978311 ~2010
93329649111866592982311 ~2009
93329817711866596354311 ~2009
933308021313066312298312 ~2011
93332640711866652814311 ~2009
93334304511866686090311 ~2009
93334605831866692116711 ~2009
93335078631866701572711 ~2009
93335197377466815789711 ~2010
93340076535600404591911 ~2010
93341730831866834616711 ~2009
93344747031866894940711 ~2009
93353318991867066379911 ~2009
93355825791867116515911 ~2009
93356681031867133620711 ~2009
93358150191867163003911 ~2009
93360556431867211128711 ~2009
Exponent Prime Factor Dig. Year
93363192439336319243111 ~2011
93368472591867369451911 ~2009
93371166711867423334311 ~2009
93371358231867427164711 ~2009
93375817797470065423311 ~2010
93378990711867579814311 ~2009
933850480135486318243912 ~2012
93385483575603129014311 ~2010
93387156711867743134311 ~2009
933876949167239140335312 ~2013
93391727631867834552711 ~2009
93395218191867904363911 ~2009
93407341311868146826311 ~2009
93411922791868238455911 ~2009
93412843335604770599911 ~2010
93413425375604805522311 ~2010
934159311114946548977712 ~2011
93416061711868321234311 ~2009
93430688031868613760711 ~2009
93432787017474622960911 ~2010
93434873991868697479911 ~2009
93436620015606197200711 ~2010
93437407431868748148711 ~2009
93442858135606571487911 ~2010
93444425391868888507911 ~2009
Exponent Prime Factor Dig. Year
93445893015606753580711 ~2010
93446812399344681239111 ~2011
93447050991868941019911 ~2009
93448889391868977787911 ~2009
934490757116820833627912 ~2011
93449135511868982710311 ~2009
93452331135607139867911 ~2010
93453325197476266015311 ~2010
93455720511869114410311 ~2009
93458825991869176519911 ~2009
93463086117477046888911 ~2010
93464548077477163845711 ~2010
93467440191869348803911 ~2009
93469407735608164463911 ~2010
93477838911869556778311 ~2009
93479418597478353487311 ~2010
93481512831869630256711 ~2009
93483335631869666712711 ~2009
93486267111869725342311 ~2009
93487809711869756194311 ~2009
93498264177479861133711 ~2010
93499753911869995078311 ~2009
93500629791870012595911 ~2009
93502504191870050083911 ~2009
93502628991870052579911 ~2009
Exponent Prime Factor Dig. Year
93506494335610389659911 ~2010
93506511711870130234311 ~2009
93510801117480864088911 ~2010
93511417911870228358311 ~2009
935176273713092467831912 ~2011
93520166991870403339911 ~2009
935216630957983431115912 ~2013
935265347313093714862312 ~2011
93527824431870556488711 ~2009
93537039591870740791911 ~2009
93539575791870791515911 ~2009
93540949791870818995911 ~2009
93541780617483342448911 ~2010
93543434511870868690311 ~2009
93543717591870874351911 ~2009
93545905135612754307911 ~2010
93551974311871039486311 ~2009
93553450911871069018311 ~2009
93560626431871212528711 ~2009
935617089116841107603912 ~2011
93563116615613786996711 ~2010
93564826735613889603911 ~2010
93566138391871322767911 ~2009
93566231511871324630311 ~2009
93569951631871399032711 ~2009
Home
4.828.532 digits
e-mail
25-06-01