Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
102197376232043947524711 ~2009
102207042112044140842311 ~2009
102210310016132618600711 ~2010
102213187976132791278311 ~2010
1022145389918398617018312 ~2012
102215155432044303108711 ~2009
1022192272334754537258312 ~2012
102225146392044502927911 ~2009
102226306736133578403911 ~2010
102230156518178412520911 ~2011
102233929192044678583911 ~2009
102242473432044849468711 ~2009
102243051112044861022311 ~2009
102245220232044904404711 ~2009
102247221616134833296711 ~2010
102248719312044974386311 ~2009
102256087792045121755911 ~2009
102258735712045174714311 ~2009
102262536776135752206311 ~2010
102262674832045253496711 ~2009
102266256592045325131911 ~2009
102267554176136053250311 ~2010
102268522432045370448711 ~2009
102271178632045423572711 ~2009
102271923832045438476711 ~2009
Exponent Prime Factor Dig. Year
102274137712045482754311 ~2009
102278942512045578850311 ~2009
102281322616136879356711 ~2010
102283882312045677646311 ~2009
102288861832045777236711 ~2009
1022925193373650613917712 ~2013
1022971474310229714743112 ~2011
102309091912046181838311 ~2009
102310140712046202814311 ~2009
102312058792046241175911 ~2009
102313319176138799150311 ~2010
102320168632046403372711 ~2009
102324463312046489266311 ~2009
102324935698185994855311 ~2011
102326422912046528458311 ~2009
102328602232046572044711 ~2009
102329228816139753728711 ~2010
1023405580310234055803112 ~2011
102346587712046931754311 ~2009
102347965312046959306311 ~2009
102356192032047123840711 ~2009
102365678392047313567911 ~2009
1023704747918426685462312 ~2012
102372353776142341226311 ~2010
102378250616142695036711 ~2010
Exponent Prime Factor Dig. Year
102384405592047688111911 ~2009
102384936232047698724711 ~2009
102385050832047701016711 ~2009
102389427832047788556711 ~2009
102391919992047838399911 ~2009
102399150616143949036711 ~2010
102399234112047984682311 ~2009
102400394992048007899911 ~2009
102404288992048085779911 ~2009
1024049587910240495879112 ~2011
1024093199314337304790312 ~2011
102413498578193079885711 ~2011
102418394632048367892711 ~2009
102418980592048379611911 ~2009
1024280436724582730480912 ~2012
102428736712048574734311 ~2009
102432114776145926886311 ~2010
102433328992048666579911 ~2009
102438845032048776900711 ~2009
102442839112048856782311 ~2009
102447084232048941684711 ~2009
102449176432048983528711 ~2009
102453857392049077147911 ~2009
102457624792049152495911 ~2009
102459352792049187055911 ~2009
Exponent Prime Factor Dig. Year
102459565432049191308711 ~2009
102461394176147683650311 ~2010
102463552192049271043911 ~2009
102466478416147988704711 ~2010
102467702632049354052711 ~2009
102467945392049358907911 ~2009
1024742753924593826093712 ~2012
102477678232049553564711 ~2009
102483395392049667907911 ~2009
102483867232049677344711 ~2009
102487653112049753062311 ~2009
102491506978199320557711 ~2011
102492941992049858839911 ~2009
102493956832049879136711 ~2009
102499551232049991024711 ~2009
102507795232050155904711 ~2009
102508323232050166464711 ~2009
102516320032050326400711 ~2009
102516526792050330535911 ~2009
102522911512050458230311 ~2009
102524046712050480934311 ~2009
102524070232050481404711 ~2009
102525108112050502162311 ~2009
102525886912050517738311 ~2009
102527198632050543972711 ~2009
Home
4.828.532 digits
e-mail
25-06-01