Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
150624302779037458166311 ~2012
1506288560912050308487312 ~2012
150633117593012662351911 ~2010
150636021113012720422311 ~2010
1506393140912051145127312 ~2012
150643612193012872243911 ~2010
150652450379039147022311 ~2012
150654515033013090300711 ~2010
1506646303712053170429712 ~2012
150665860339039951619911 ~2012
1506668046715066680467112 ~2012
150672982939040378975911 ~2012
150684298913013685978311 ~2010
1506999774133153995030312 ~2013
150704147393014082947911 ~2010
150714120539042847231911 ~2012
1507165288712057322309712 ~2012
150716719913014334398311 ~2010
1507291356724116661707312 ~2013
150732241193014644823911 ~2010
150739627193014792543911 ~2010
150750396593015007931911 ~2010
150769564913015391298311 ~2010
150775816433015516328711 ~2010
150794608433015892168711 ~2010
Exponent Prime Factor Dig. Year
150800094593016001891911 ~2010
150801885233016037704711 ~2010
150816399833016327996711 ~2010
1508199267124131188273712 ~2013
1508242069712065936557712 ~2012
150825539393016510787911 ~2010
150826337393016526747911 ~2010
150831982193016639643911 ~2010
150837239393016744787911 ~2010
150845244379050714662311 ~2012
150855192833017103856711 ~2010
150863863193017277263911 ~2010
1508649362339224883419912 ~2013
150872453393017449067911 ~2010
150874803713017496074311 ~2010
150878755313017575106311 ~2010
1508850475915088504759112 ~2012
150887341619053240496711 ~2012
1508910535927160389646312 ~2013
150893575339053614519911 ~2012
150899450993017989019911 ~2010
150916767833018335356711 ~2010
1509188500712073508005712 ~2012
1509205913912073647311312 ~2012
150925261313018505226311 ~2010
Exponent Prime Factor Dig. Year
150927083033018541660711 ~2010
150927103433018542068711 ~2010
150932960513018659210311 ~2010
150933584993018671699911 ~2010
1509364774324149836388912 ~2013
150963027233019260544711 ~2010
150970605713019412114311 ~2010
150973238633019464772711 ~2010
150978145193019562903911 ~2010
150985652393019713047911 ~2010
150988453733128...61285714 2024
150990605513019812110311 ~2010
150992740313019854806311 ~2010
1509984666727179724000712 ~2013
150999692819059981568711 ~2012
1510104151112080833208912 ~2012
151010632913020212658311 ~2010
151015887379060953242311 ~2012
151017853793020357075911 ~2010
151019865833020397316711 ~2010
151019932433020398648711 ~2010
1510231393112081851144912 ~2012
151032204379061932262311 ~2012
1510376839112083014712912 ~2012
151051887233021037744711 ~2010
Exponent Prime Factor Dig. Year
151066774739064006483911 ~2012
1510715890148342908483312 ~2013
151076104313021522086311 ~2010
151088259233021765184711 ~2011
151088901233021778024711 ~2011
151111404593022228091911 ~2011
151112416433022248328711 ~2011
151120009793022400195911 ~2011
151124169113022483382311 ~2011
151126384793022527695911 ~2011
151140011633022800232711 ~2011
151142135633022842712711 ~2011
151159813793023196275911 ~2011
151176517139070591027911 ~2012
151179211913023584238311 ~2011
151186548233023730964711 ~2011
1511877829163498868822312 ~2014
151201840433024036808711 ~2011
151202342033024046840711 ~2011
151205120633024102412711 ~2011
1512177952112097423616912 ~2012
151226094233024521884711 ~2011
151230323993024606479911 ~2011
1512373241321173225378312 ~2013
151239304433024786088711 ~2011
Home
4.724.182 digits
e-mail
25-04-13