Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
104885370112097707402311 ~2009
104890438912097808778311 ~2009
104893935592097878711911 ~2009
104897668018391813440911 ~2011
1049049687110490496871112 ~2011
104906203192098124063911 ~2009
104908835818392706864911 ~2011
1049135536310491355363112 ~2011
104914443176294866590311 ~2010
104918414032098368280711 ~2009
104920207192098404143911 ~2009
104920273792098405475911 ~2009
104923299232098465984711 ~2009
104924589232098491784711 ~2009
104933022232098660444711 ~2009
104933641816296018508711 ~2010
104933650792098673015911 ~2009
104934105616296046336711 ~2010
1049400017333580800553712 ~2012
104940014936296400895911 ~2010
104941951432098839028711 ~2009
104947055032098941100711 ~2009
104949830216296989812711 ~2010
104955041632099100832711 ~2009
104957887912099157758311 ~2009
Exponent Prime Factor Dig. Year
104961314632099226292711 ~2009
104963648632099272972711 ~2009
104969547712099390954311 ~2009
104969943832099398876711 ~2009
104970277976298216678311 ~2010
1049734537910497345379112 ~2011
104981016118398481288911 ~2011
1049863387731495901631112 ~2012
104999151832099983036711 ~2009
105017513392100350267911 ~2009
105018286432100365728711 ~2009
105022645816301358748711 ~2010
105025124576301507474311 ~2010
105025228432100504568711 ~2009
105025573192100511463911 ~2009
105027690832100553816711 ~2009
105035464912100709298311 ~2009
105036027832100720556711 ~2009
1050376629116806026065712 ~2011
105040623016302437380711 ~2010
105043543192100870863911 ~2009
1050502953748323135870312 ~2013
105051092992101021859911 ~2009
105052444792101048895911 ~2009
105058218112101164362311 ~2009
Exponent Prime Factor Dig. Year
105062219416303733164711 ~2010
105067135312101342706311 ~2009
105069228832101384576711 ~2009
105071146192101422923911 ~2009
105075185216304511112711 ~2010
1050772359110507723591112 ~2011
105078239512101564790311 ~2009
105079588432101591768711 ~2009
105080455432101609108711 ~2009
105080492632101609852711 ~2009
105081448312101628966311 ~2009
105082273336304936399911 ~2010
105082501912101650038311 ~2009
105084695992101693919911 ~2009
105088424992101768499911 ~2009
105106870736306412243911 ~2010
105108896816306533808711 ~2010
105110254192102205083911 ~2009
105111424192102228483911 ~2009
105123403136307404187911 ~2010
105127196992102543939911 ~2009
105127252312102545046311 ~2009
105129160976307749658311 ~2010
105131892416307913544711 ~2010
105132425816307945548711 ~2010
Exponent Prime Factor Dig. Year
105136969432102739388711 ~2009
105138321592102766431911 ~2009
105142046392102840927911 ~2009
105145882192102917643911 ~2009
105147373192102947463911 ~2009
105154526536309271591911 ~2010
105158835232103176704711 ~2009
105160088032103201760711 ~2009
105165547498413243799311 ~2011
105170141776310208506311 ~2010
105174321712103486434311 ~2009
105175024312103500486311 ~2009
105175509712103510194311 ~2009
105179527432103590548711 ~2009
1051813204131554396123112 ~2012
105182414032103648280711 ~2009
105184644712103692894311 ~2009
105192780232103855604711 ~2009
1051987921725247710120912 ~2012
1052032474316832519588912 ~2011
1052042407316832678516912 ~2011
105207991192104159823911 ~2009
105221188912104423778311 ~2009
105221951992104439039911 ~2009
105222958312104459166311 ~2009
Home
4.828.532 digits
e-mail
25-06-01