Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
105223746832104474936711 ~2009
105227061776313623706311 ~2010
1052320722116837131553712 ~2011
105233533312104670666311 ~2009
105240416392104808327911 ~2009
105243287392104865747911 ~2009
105253428712105068574311 ~2009
105257593198420607455311 ~2011
105258908278420712661711 ~2011
105259740712105194814311 ~2009
105265725712105314514311 ~2009
105267321592105346431911 ~2009
105268862392105377247911 ~2009
105271876378421750109711 ~2011
105283085032105661700711 ~2009
105291285232105825704711 ~2009
105293420392105868407911 ~2009
105300846112106016922311 ~2009
105302493712106049874311 ~2009
105303602992106072059911 ~2009
105304110616318246636711 ~2010
105304689112106093782311 ~2009
105304761112106095222311 ~2009
105304924912106098498311 ~2009
105309150776318549046311 ~2010
Exponent Prime Factor Dig. Year
105320192032106403840711 ~2009
105332221312106644426311 ~2009
105333313312106666266311 ~2009
105335702536320142151911 ~2010
105344193536320651611911 ~2010
105348669832106973396711 ~2009
105357208432107144168711 ~2009
105359972032107199440711 ~2009
105363642712107272854311 ~2009
105367128112107342562311 ~2009
105370374778429629981711 ~2011
105373559032107471180711 ~2009
105377590912107551818311 ~2009
105384726112107694522311 ~2009
105384739192107694783911 ~2009
105388081936323284915911 ~2010
105390199792107803995911 ~2009
105393447712107868954311 ~2009
1053953587910539535879112 ~2011
105398993992107979879911 ~2009
1053999540716863992651312 ~2011
105401210936324072655911 ~2010
105425258032108505160711 ~2009
105428189392108563787911 ~2009
105439853216326391192711 ~2010
Exponent Prime Factor Dig. Year
105441540376326492422311 ~2010
105444970912108899418311 ~2009
105446904832108938096711 ~2009
105453681112109073622311 ~2009
105459735232109194704711 ~2009
105460038232109200764711 ~2009
105464500912109290018311 ~2009
105467119432109342388711 ~2009
105483089992109661799911 ~2009
105486111232109722224711 ~2009
105487500712109750014311 ~2009
105489354592109787091911 ~2009
105492036112109840722311 ~2009
1054962433323209173532712 ~2012
105496870792109937415911 ~2009
105497480032109949600711 ~2009
105499475632109989512711 ~2009
105501946312110038926311 ~2009
105504006712110080134311 ~2009
105505768192110115363911 ~2009
105515906032110318120711 ~2009
105516393592110327871911 ~2009
105519856078441588485711 ~2011
105532105792110642115911 ~2009
105537037912110740758311 ~2009
Exponent Prime Factor Dig. Year
105538558613712...91899914 2025
105540976792110819535911 ~2009
105545910418443672832911 ~2011
105555290576333317434311 ~2010
105560791192111215823911 ~2009
1055682417116890918673712 ~2012
105573645232111472904711 ~2009
105582608992111652179911 ~2009
105583310992111666219911 ~2009
105586284712111725694311 ~2009
105591094976335465698311 ~2010
105591912112111838242311 ~2009
105594382312111887646311 ~2009
1056007083119008127495912 ~2012
105602039032112040780711 ~2009
105608546632112170932711 ~2009
105610267136336616027911 ~2010
105619098112112381962311 ~2009
105622958392112459167911 ~2009
105624130192112482603911 ~2009
1056297703725351144888912 ~2012
1056332902719013992248712 ~2012
105638550832112771016711 ~2009
105638602432112772048711 ~2009
105642250192112845003911 ~2009
Home
4.828.532 digits
e-mail
25-06-01