Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
156789841313135796826311 ~2011
156790701713135814034311 ~2011
1567925010125086800161712 ~2013
156797406833135948136711 ~2011
156799085513135981710311 ~2011
156799293713135985874311 ~2011
156807830033136156600711 ~2011
156809522993136190459911 ~2011
156814226513136284530311 ~2011
156823737713136474754311 ~2011
156843522233136870444711 ~2011
1568666564912549332519312 ~2012
156867734993137354699911 ~2011
156870946939412256815911 ~2012
156871145633137422912711 ~2011
156880739393137614787911 ~2011
156883315913137666318311 ~2011
156889533419413372004711 ~2012
156893625833137872516711 ~2011
1568997638337655943319312 ~2013
1569060171115690601711112 ~2012
1569095664134520104610312 ~2013
156914759393138295187911 ~2011
156917228819415033728711 ~2012
156922998019415379880711 ~2012
Exponent Prime Factor Dig. Year
156927462113138549242311 ~2011
156931798193138635963911 ~2011
156942756593138855131911 ~2011
1569485967125111775473712 ~2013
156950868113139017362311 ~2011
156951453593139029071911 ~2011
156967482979418048978311 ~2012
156973249913139464998311 ~2011
156973505339418410319911 ~2012
1569839627965933264371912 ~2014
156999548633139990972711 ~2011
156999692033139993840711 ~2011
157002509779420150586311 ~2012
1570091346715700913467112 ~2012
157026579233140531584711 ~2011
1570288359115702883591112 ~2012
157036099219422165952711 ~2012
157045042193140900843911 ~2011
1570482467912563859743312 ~2012
157051923233141038464711 ~2011
1570531828325128509252912 ~2013
157059419393141188387911 ~2011
1570660747325130571956912 ~2013
157090101139425406067911 ~2012
157093930193141878603911 ~2011
Exponent Prime Factor Dig. Year
157096451779425787106311 ~2012
157098847193141976943911 ~2011
157099847993141996959911 ~2011
1571110922912568887383312 ~2012
157111095593142221911911 ~2011
157113379193142267583911 ~2011
157120668139427240087911 ~2012
1571226900715712269007112 ~2012
1571241959912569935679312 ~2012
157126487993142529759911 ~2011
157126797113142535942311 ~2011
157127810993142556219911 ~2011
157128946979427736818311 ~2012
157144367393142887347911 ~2011
1571465368712571722949712 ~2012
157149977993142999559911 ~2011
157150222433143004448711 ~2011
157158654979429519298311 ~2012
157170172793143403455911 ~2011
157172631233143452624711 ~2011
157175653433143513068711 ~2011
157180754633143615092711 ~2011
1571808290922005316072712 ~2013
157189023233143780464711 ~2011
157193925113143878502311 ~2011
Exponent Prime Factor Dig. Year
157194345179431660710311 ~2012
157196888393143937767911 ~2011
157215201233144304024711 ~2011
157215618713144312374311 ~2011
157217297391197...06111914 2023
1572276364315722763643112 ~2012
157228524233144570484711 ~2011
157229851193144597023911 ~2011
1572322303712578578429712 ~2012
157240208033144804160711 ~2011
157245412339434724739911 ~2012
157253814113145076282311 ~2011
1572604546325161672740912 ~2013
157260916379435654982311 ~2012
157268106779436086406311 ~2012
157271950793145439015911 ~2011
157280240513145604810311 ~2011
157286102219437166132711 ~2012
157288206713145764134311 ~2011
157288399913145767998311 ~2011
157296474713145929494311 ~2011
157299122393145982447911 ~2011
1573005761322022080658312 ~2013
157309526219438571572711 ~2012
157313504993146270099911 ~2011
Home
4.724.182 digits
e-mail
25-04-13