Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
157322438993146448779911 ~2011
1573303855334612684816712 ~2013
157335183713146703674311 ~2011
157337190779440231446311 ~2012
1573433417912587467343312 ~2012
157348445513146968910311 ~2011
157354678379441280702311 ~2012
1573605107347208153219112 ~2014
157362798419441767904711 ~2012
157365302033147306040711 ~2011
157370275433147405508711 ~2011
157398698393147973967911 ~2011
157399450433147989008711 ~2011
157408470139444508207911 ~2012
157415259113148305182311 ~2011
157420748633148414972711 ~2011
1574229252125187668033712 ~2013
157424611313148492226311 ~2011
1574367015747231010471112 ~2014
157437926993148758539911 ~2011
1574465782937787178789712 ~2013
1574538454112596307632912 ~2012
157463839793149276795911 ~2011
157464809993149296199911 ~2011
157466819033149336380711 ~2011
Exponent Prime Factor Dig. Year
157468895033149377900711 ~2011
157469133139448147987911 ~2012
157469727139448183627911 ~2012
157490464793149809295911 ~2011
157502751713150055034311 ~2011
157511099633150221992711 ~2011
157514112113150282242311 ~2011
157521490793150429815911 ~2011
157526830313150536606311 ~2011
157537705313150754106311 ~2011
157541676593150833531911 ~2011
1575442273712603538189712 ~2012
157545911033150918220711 ~2011
157547232233150944644711 ~2011
157562033993151240679911 ~2011
157563115313151262306311 ~2011
157564196393151283927911 ~2011
1575645611937815494685712 ~2013
157565540633151310812711 ~2011
157567469633151349392711 ~2011
157572543233151450864711 ~2011
157572603833151452076711 ~2011
1575730876112605847008912 ~2012
157574502233151490044711 ~2011
157575633979454538038311 ~2012
Exponent Prime Factor Dig. Year
157578540713151570814311 ~2011
157586839433151736788711 ~2011
157597744193151954883911 ~2011
157599398179455963890311 ~2012
1576029269322064409770312 ~2013
157617306833152346136711 ~2011
157624179419457450764711 ~2012
157624566593152491331911 ~2011
1576284802740983404870312 ~2013
157649025113152980502311 ~2011
157659107993153182159911 ~2011
157659845513153196910311 ~2011
157662602993153252059911 ~2011
157672590833153451816711 ~2011
157676461793153529235911 ~2011
157677110531475...54560914 2024
157684512779461070766311 ~2012
157686306233153726124711 ~2011
157687116713153742334311 ~2011
1576914163112615313304912 ~2012
157693256393153865127911 ~2011
157693369913153867398311 ~2011
157700799539462047971911 ~2012
157704092993154081859911 ~2011
157707794393154155887911 ~2011
Exponent Prime Factor Dig. Year
1577085777115770857771112 ~2012
157711187339462671239911 ~2012
157713190433154263808711 ~2011
157722170393154443407911 ~2011
157724876633154497532711 ~2011
157745952233154919044711 ~2011
1577461039334704142864712 ~2013
157746620633154932412711 ~2011
157751013833155020276711 ~2011
157754926193155098523911 ~2011
157757081393155141627911 ~2011
157759415393155188307911 ~2011
157762303313155246066311 ~2011
157765061393155301227911 ~2011
157774047113155480942311 ~2011
157777491713155549834311 ~2011
157778339219466700352711 ~2012
157787005193155740103911 ~2011
157787727833155754556711 ~2011
157791451313155829026311 ~2011
1577936851112623494808912 ~2012
157795369913155907398311 ~2011
1577956741712623653933712 ~2012
1577964550947338936527112 ~2014
157797034193155940683911 ~2011
Home
4.724.182 digits
e-mail
25-04-13