Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
157802080793156041615911 ~2011
157809877793156197555911 ~2011
157811798393156235967911 ~2011
157815275513156305510311 ~2011
157816115393156322307911 ~2011
157817206819469032408711 ~2012
157821598433156431968711 ~2011
157827962033156559240711 ~2011
157830193913156603878311 ~2011
157832326019469939560711 ~2012
1578375880315783758803112 ~2012
157841507033156830140711 ~2011
157847001113156940022311 ~2011
157849891979470993518311 ~2012
157854673193157093463911 ~2011
157863948593157278971911 ~2011
157867759193157355183911 ~2011
157871405033157428100711 ~2011
157882544033157650880711 ~2011
157883812939473028775911 ~2012
157892784233157855684711 ~2011
157894939913157898798311 ~2011
157907144513158142890311 ~2011
157908636593158172731911 ~2011
157913206819474792408711 ~2012
Exponent Prime Factor Dig. Year
157926560513158531210311 ~2011
157927336793158546735911 ~2011
1579414903112635319224912 ~2012
1579418776728429537980712 ~2013
157943612939476616775911 ~2012
157947672113158953442311 ~2011
157947831593158956631911 ~2011
1579524934112636199472912 ~2012
1579539572912636316583312 ~2012
1579573944715795739447112 ~2012
157962437633159248752711 ~2011
157972321793159446435911 ~2011
1579807255112638458040912 ~2012
157985614913159712298311 ~2011
157989048113159780962311 ~2011
157992012833159840256711 ~2011
157992020633159840412711 ~2011
157998665393159973307911 ~2011
158001615713160032314311 ~2011
158014450313160289006311 ~2011
158014450913160289018311 ~2011
158014627793160292555911 ~2011
158015472713160309454311 ~2011
158017816793160356335911 ~2011
158039763233160795264711 ~2011
Exponent Prime Factor Dig. Year
158041569379482494162311 ~2012
1580422550912643380407312 ~2012
158046332033160926640711 ~2011
1580529124112644232992912 ~2012
158053620713161072414311 ~2011
1580539982922127559760712 ~2013
158057572379483454342311 ~2012
158083154993161663099911 ~2011
158086617233161732344711 ~2011
158088805379485328322311 ~2012
158099606513161992130311 ~2011
158104908593162098171911 ~2011
1581049174315810491743112 ~2012
158112805193162256103911 ~2011
1581135732715811357327112 ~2012
158114615513162292310311 ~2011
158126737313162534746311 ~2011
158132166233162643324711 ~2011
158134814579488088874311 ~2012
158140822793162816455911 ~2011
158153334593163066691911 ~2011
1581632095128469377711912 ~2013
158165923313163318466311 ~2011
1581687884337960509223312 ~2013
158175067913163501358311 ~2011
Exponent Prime Factor Dig. Year
158180679833163613596711 ~2011
158187382313163747646311 ~2011
158191391033163827820711 ~2011
158192538833163850776711 ~2011
1581950953334802920972712 ~2013
158202202433164044048711 ~2011
158202260033164045200711 ~2011
1582058235725312931771312 ~2013
158213608339492816499911 ~2012
158214480593164289611911 ~2011
158218434233164368684711 ~2011
158227574819493654488711 ~2012
158236349993164726999911 ~2011
158239109393164782187911 ~2011
158250368819495022128711 ~2012
1582575001337981800031312 ~2013
158259318671519...59232114 2023
158260576131063...71593714 2023
1582687358922157623024712 ~2013
158269024939496141495911 ~2012
158269100819496146048711 ~2012
158271549113165430982311 ~2011
158277326993165546539911 ~2011
1583150474922164106648712 ~2013
158324617193166492343911 ~2011
Home
4.724.182 digits
e-mail
25-04-13