Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
121669473712433389474311 ~2010
121670007712433400154311 ~2010
121671597479733727797711 ~2011
1216757858331635704315912 ~2013
1216758946312167589463112 ~2011
121688258032433765160711 ~2010
121694087937301645275911 ~2011
121694254312433885086311 ~2010
121698269512433965390311 ~2010
121699010392433980207911 ~2010
121701075832434021516711 ~2010
121704874017302292440711 ~2011
121705021912434100438311 ~2010
121706838592434136771911 ~2010
1217100097319473601556912 ~2012
121714015979737121277711 ~2011
121717403512434348070311 ~2010
121718448592434368971911 ~2010
121725074392434501487911 ~2010
121736164617304169876711 ~2011
121736428432434728568711 ~2010
121738172632434763452711 ~2010
121739582392434791647911 ~2010
1217408155121913346791912 ~2012
121745520832434910416711 ~2010
Exponent Prime Factor Dig. Year
121747079392434941587911 ~2010
1217566003326786452072712 ~2012
121761059512435221190311 ~2010
121767594112435351882311 ~2010
121770831112435416622311 ~2010
121776056632435521132711 ~2010
121781202617306872156711 ~2011
121781935912435638718311 ~2010
121782696832435653936711 ~2010
121782948712435658974311 ~2010
121785676792435713535911 ~2010
121789980112435799602311 ~2010
121798619512435972390311 ~2010
121801135312436022706311 ~2010
121803517792436070355911 ~2010
121804844992436096899911 ~2010
1218233547112182335471112 ~2011
121824133577309448014311 ~2011
121830462737309827763911 ~2011
1218305730712183057307112 ~2011
121831864432436637288711 ~2010
121845782392436915647911 ~2010
121847447632436948952711 ~2010
121847829592436956591911 ~2010
121857403199748592255311 ~2011
Exponent Prime Factor Dig. Year
121862873817311772428711 ~2011
121866024232437320484711 ~2010
121873810912437476218311 ~2010
121873917617312435056711 ~2011
121884075712437681514311 ~2010
121884709912437694198311 ~2010
121904512619752361008911 ~2011
121909957019752796560911 ~2011
121923591712438471834311 ~2010
121926722032438534440711 ~2010
121936019632438720392711 ~2010
121936164232438723284711 ~2010
121939689712438793794311 ~2010
121943812912438876258311 ~2010
121946210512438924210311 ~2010
121966999192439339983911 ~2010
121968590392439371807911 ~2010
121974289337318457359911 ~2011
121975736512439514730311 ~2010
121976033392439520667911 ~2010
121979733179758378653711 ~2011
121981848712439636974311 ~2010
121983308219758664656911 ~2011
121994976719759598136911 ~2011
121995717119759657368911 ~2011
Exponent Prime Factor Dig. Year
121998367737319902063911 ~2011
121999213792439984275911 ~2010
122002637392440052747911 ~2010
122005779417320346764711 ~2011
122018462632440369252711 ~2010
122019076312440381526311 ~2010
122022123537321327411911 ~2011
122024386912440487738311 ~2010
122029753912440595078311 ~2010
122041218719763297496911 ~2011
122048116377322886982311 ~2011
122049164632440983292711 ~2010
122052040792441040815911 ~2010
1220537325112205373251112 ~2011
122054718232441094364711 ~2010
122055324592441106491911 ~2010
122058744592441174891911 ~2010
122060148232441202964711 ~2010
122064446992441288939911 ~2010
122071324912441426498311 ~2010
122074017617324441056711 ~2011
122076518992441530379911 ~2010
1220781913717090946791912 ~2012
122081697073828...20115314 2024
122083504192441670083911 ~2010
Home
4.828.532 digits
e-mail
25-06-01