Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
134803303738088198223911 ~2011
134810023192696200463911 ~2010
1348109748121569755969712 ~2012
1348208629718874920815912 ~2012
134823148432696462968711 ~2010
134823778192696475563911 ~2010
134833697178090021830311 ~2011
134835773778090146426311 ~2011
134837958592696759171911 ~2010
134838738538090324311911 ~2011
134847668632696953372711 ~2010
134848734592696974691911 ~2010
134849679712696993594311 ~2010
134851603792697032075911 ~2010
134855171418091310284711 ~2011
1348674806910789398455312 ~2012
134869121632697382432711 ~2010
134870107312697402146311 ~2010
134872810912697456218311 ~2010
134876403592697528071911 ~2010
134881214632697624292711 ~2010
134881339792697626795911 ~2010
134883798232697675964711 ~2010
134885722312697714446311 ~2010
134893129818093587788711 ~2011
Exponent Prime Factor Dig. Year
1349004368367450218415112 ~2014
134905446592698108931911 ~2010
1349066587913490665879112 ~2012
134909237632698184752711 ~2010
134912785792698255715911 ~2010
1349168997124285041947912 ~2012
1349169823710793358589712 ~2012
134921185338095271119911 ~2011
134925967912698519358311 ~2010
1349299810932383195461712 ~2013
134942995018096579700711 ~2011
134957310832699146216711 ~2010
134972230938098333855911 ~2011
134976714712699534294311 ~2010
1349780916745892551167912 ~2013
134978726392699574527911 ~2010
134982471232699649424711 ~2010
134989489792699789795911 ~2010
134998685178099921110311 ~2011
135000961432700019228711 ~2010
135001258192700025163911 ~2010
135003240832700064816711 ~2010
135008054632700161092711 ~2010
135010819432700216388711 ~2010
1350151579110801212632912 ~2012
Exponent Prime Factor Dig. Year
135022985392700459707911 ~2010
1350248065710801984525712 ~2012
135047345392700946907911 ~2010
1350481318313504813183112 ~2012
135050349712701006994311 ~2010
135055699192701113983911 ~2010
135060575032701211500711 ~2010
135066298192701325963911 ~2010
135075330978104519858311 ~2011
135084288592701685771911 ~2010
135085409992701708199911 ~2010
135092611338105556679911 ~2011
135102726832702054536711 ~2010
135117488392702349767911 ~2010
1351233028710809864229712 ~2012
135128110792702562215911 ~2010
1351335877710810687021712 ~2012
135142988818108579328711 ~2011
135146283592702925671911 ~2010
135148010392702960207911 ~2010
135155943618109356616711 ~2011
1351590011910812720095312 ~2012
135163374592703267491911 ~2010
135175211032703504220711 ~2010
135177288178110637290311 ~2011
Exponent Prime Factor Dig. Year
135187925032703758500711 ~2010
135189349312703786986311 ~2010
135193976632703879532711 ~2010
135202476232704049524711 ~2010
135209161912704183238311 ~2010
135214610392704292207911 ~2010
135218134792704362695911 ~2010
135220406392704408127911 ~2010
1352208220710817665765712 ~2012
1352212945110817703560912 ~2012
135233592112704671842311 ~2010
135234752632704695052711 ~2010
135234978112704699562311 ~2010
135240668178114440090311 ~2011
135248274232704965484711 ~2010
1352531008321640496132912 ~2012
135260368192705207363911 ~2010
135266893912705337878311 ~2010
1352678827710821430621712 ~2012
135270620992705412419911 ~2010
135274019032705480380711 ~2010
135276498232705529964711 ~2010
1352888482764938647169712 ~2014
135289852432705797048711 ~2010
1352979144713529791447112 ~2012
Home
4.828.532 digits
e-mail
25-06-01