Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
201122636634022452732711 ~2011
201151484634023029692711 ~2011
2011627743712069766462312 ~2013
201164022834023280456711 ~2011
2011701194928163816728712 ~2014
201171532914023430658311 ~2011
201172995234023459904711 ~2011
201210976732201...85426314 2023
201214232514024284650311 ~2011
2012166271116097330168912 ~2013
2012270072352319021879912 ~2014
201229931394024598627911 ~2011
2012323101748295754440912 ~2014
201232908714024658174311 ~2011
2012465623116099724984912 ~2013
201251778234025035564711 ~2011
201257572434025151448711 ~2011
201264613914025292278311 ~2011
201273279114025465582311 ~2011
2012823772944282123003912 ~2014
2012829964112076979784712 ~2013
201287575314025751506311 ~2011
201291386634025827732711 ~2011
2013003243120130032431112 ~2013
2013043647712078261886312 ~2013
Exponent Prime Factor Dig. Year
201305258394026105167911 ~2011
201310310994026206219911 ~2011
201311768994026235379911 ~2011
201318956394026379127911 ~2011
201319165314026383306311 ~2011
201348115314026962306311 ~2011
201380003394027600067911 ~2011
201402821394028056427911 ~2011
201403855434028077108711 ~2011
2014064368320140643683112 ~2013
201412596834028251936711 ~2011
2014165784960424973547112 ~2014
2014215356948341168565712 ~2014
201423652194028473043911 ~2011
201429146514028582930311 ~2011
201445326714028906534311 ~2011
2014466011312086796067912 ~2013
201451098234029021964711 ~2011
201465861114029317222311 ~2011
201470099514029401990311 ~2011
2014768723344324911912712 ~2014
201476896194029537923911 ~2011
201479930394029598607911 ~2011
2014934467936268820422312 ~2014
201501579834030031596711 ~2011
Exponent Prime Factor Dig. Year
201505408434030108168711 ~2011
2015115924112090695544712 ~2013
201513228114030264562311 ~2011
201540161994030803239911 ~2011
201540744714030814894311 ~2011
201545123514030902470311 ~2011
201557175114031143502311 ~2011
2015582241712093493450312 ~2013
2015590396116124723168912 ~2013
2015708514112094251084712 ~2013
2015724623328220144726312 ~2014
201581765394031635307911 ~2011
2015821433916126571471312 ~2013
2015923623120159236231112 ~2013
2016045345132256725521712 ~2014
201614976594032299531911 ~2011
201626535234032530704711 ~2011
201636653394032733067911 ~2011
2016396930748393526336912 ~2014
201648205794032964115911 ~2011
201669633594033392671911 ~2011
2016723936112100343616712 ~2013
2016772243360503167299112 ~2014
201702138594034042771911 ~2011
201705269634034105392711 ~2011
Exponent Prime Factor Dig. Year
201707914794034158295911 ~2011
201716293434034325868711 ~2011
2017392844348417428263312 ~2014
201741745194034834903911 ~2011
201743623194034872463911 ~2011
201744098514034881970311 ~2011
2017460176320174601763112 ~2013
201767808594035356171911 ~2011
201769944714035398894311 ~2011
2017721088112106326528712 ~2013
2017779599312106677595912 ~2013
201780985194035619703911 ~2011
201782301234035646024711 ~2011
201809697234036193944711 ~2011
2018131771312108790627912 ~2013
2018147500716145180005712 ~2013
2018176539712109059238312 ~2013
201823366794036467335911 ~2011
201844149834036882996711 ~2011
201854052114037081042311 ~2011
2018689557712112137346312 ~2013
201870152394037403047911 ~2011
201875987514037519750311 ~2011
201876372714037527454311 ~2011
2018804169712112825018312 ~2013
Home
4.724.182 digits
e-mail
25-04-13