Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
151017853793020357075911 ~2011
151019865833020397316711 ~2011
151019932433020398648711 ~2011
1510231393112081851144912 ~2012
151032204379061932262311 ~2012
1510376839112083014712912 ~2012
151051887233021037744711 ~2011
151066774739064006483911 ~2012
1510715890148342908483312 ~2013
151076104313021522086311 ~2011
151088259233021765184711 ~2011
151088901233021778024711 ~2011
151111404593022228091911 ~2011
151112416433022248328711 ~2011
151120009793022400195911 ~2011
151124169113022483382311 ~2011
151126384793022527695911 ~2011
151140011633022800232711 ~2011
151142135633022842712711 ~2011
151159813793023196275911 ~2011
151176517139070591027911 ~2012
151179211913023584238311 ~2011
151186548233023730964711 ~2011
1511877829163498868822312 ~2014
151201840433024036808711 ~2011
Exponent Prime Factor Dig. Year
151202342033024046840711 ~2011
151205120633024102412711 ~2011
1512177952112097423616912 ~2012
151226094233024521884711 ~2011
151230323993024606479911 ~2011
1512373241321173225378312 ~2013
151239304433024786088711 ~2011
1512575855321176061974312 ~2013
151258799633025175992711 ~2011
1512649225721177089159912 ~2013
151267976633025359532711 ~2011
151269957833025399156711 ~2011
151270197179076211830311 ~2012
151276502033025530040711 ~2011
1512779098736306698368912 ~2013
151278622793025572455911 ~2011
151280040113025600802311 ~2011
1512819248912102553991312 ~2012
1512845270972616573003312 ~2014
151290334433025806688711 ~2011
1512930086912103440695312 ~2012
151295062793025901255911 ~2011
151296996593025939931911 ~2011
1512997374133285942230312 ~2013
151321816793026436335911 ~2011
Exponent Prime Factor Dig. Year
151326177379079570642311 ~2012
151354675793027093515911 ~2011
151354896139081293767911 ~2012
151358338313027166766311 ~2011
151380067913027601358311 ~2011
151386318113027726362311 ~2011
151389001913027780038311 ~2011
151390040993027800819911 ~2011
151397433833027948676711 ~2011
1514139912724226238603312 ~2013
151421004739085260283911 ~2012
151421852033028437040711 ~2011
151445218913028904378311 ~2011
151449195779026...67892114 2025
151449868913028997378311 ~2011
151462953713029259074311 ~2011
151474366913029487338311 ~2011
151475928713029518574311 ~2011
151496825993029936519911 ~2011
151497466793029949335911 ~2011
151502607113030052142311 ~2011
151504827179090289630311 ~2012
151505475379090328522311 ~2012
151509941393030198827911 ~2011
151510046633030200932711 ~2011
Exponent Prime Factor Dig. Year
151514338793030286775911 ~2011
151516944713030338894311 ~2011
1515176498912121411991312 ~2012
151520518913030410378311 ~2011
151526578793030531575911 ~2011
151533622193030672443911 ~2011
1515338155721214734179912 ~2013
151551329033031026580711 ~2011
151553484713031069694311 ~2011
151560873113031217462311 ~2011
151563286619093797196711 ~2012
151564772393031295447911 ~2011
151574753513031495070311 ~2011
151577577113031551542311 ~2011
1515814552112126516416912 ~2012
151581509393031630187911 ~2011
151588150433031763008711 ~2011
151598165993031963319911 ~2011
151598356793031967135911 ~2011
151603290593032065811911 ~2011
151611074993032221499911 ~2011
151621397033032427940711 ~2011
151628529233032570584711 ~2011
151642373393032847467911 ~2011
151645828433032916568711 ~2011
Home
4.828.532 digits
e-mail
25-06-01