Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
150482082371661...89364914 2024
150483251633009665032711 ~2010
150484248833009684976711 ~2010
150499126793009982535911 ~2010
150500534779030032086311 ~2012
150502988633010059772711 ~2010
150513368513010267370311 ~2010
150517378193010347563911 ~2010
150524618633010492372711 ~2010
150527917311168...38325714 2023
1505376186724086018987312 ~2013
150543400793010868015911 ~2010
150544241393010884827911 ~2010
150548819513010976390311 ~2010
150552647513011052950311 ~2010
150566648819033998928711 ~2012
150567394793011347895911 ~2010
150567804113011356082311 ~2010
150572778833011455576711 ~2010
150573775913011475518311 ~2010
150575988593011519771911 ~2010
1505824763936139794333712 ~2013
1505868697721082161767912 ~2013
150593349713011866994311 ~2010
1505953741745178612251112 ~2013
Exponent Prime Factor Dig. Year
150598210793011964215911 ~2010
150599404913011988098311 ~2010
1506041671915060416719112 ~2012
150617591513012351830311 ~2010
1506188607127111394927912 ~2013
150623130833012462616711 ~2010
150624302779037458166311 ~2012
1506288560912050308487312 ~2012
150633117593012662351911 ~2010
150636021113012720422311 ~2010
1506393140912051145127312 ~2012
150643612193012872243911 ~2010
150652450379039147022311 ~2012
150654515033013090300711 ~2010
1506646303712053170429712 ~2012
150665860339039951619911 ~2012
1506668046715066680467112 ~2012
150672982939040378975911 ~2012
150684298913013685978311 ~2010
1506999774133153995030312 ~2013
150704147393014082947911 ~2010
150714120539042847231911 ~2012
1507165288712057322309712 ~2012
150716719913014334398311 ~2010
1507291356724116661707312 ~2013
Exponent Prime Factor Dig. Year
150732241193014644823911 ~2010
150739627193014792543911 ~2010
150750396593015007931911 ~2010
150769564913015391298311 ~2010
150775816433015516328711 ~2010
150794608433015892168711 ~2010
150800094593016001891911 ~2010
150801885233016037704711 ~2010
150816399833016327996711 ~2010
1508199267124131188273712 ~2013
1508242069712065936557712 ~2012
150825539393016510787911 ~2010
150826337393016526747911 ~2010
150831982193016639643911 ~2010
150837239393016744787911 ~2010
150845244379050714662311 ~2012
150855192833017103856711 ~2011
150863863193017277263911 ~2011
1508649362339224883419912 ~2013
150872453393017449067911 ~2011
150874803713017496074311 ~2011
150878755313017575106311 ~2011
1508850475915088504759112 ~2012
150887341619053240496711 ~2012
1508910535927160389646312 ~2013
Exponent Prime Factor Dig. Year
150893575339053614519911 ~2012
150899450993017989019911 ~2011
150916767833018335356711 ~2011
1509188500712073508005712 ~2012
150919358513018387170311 ~2011
1509205913912073647311312 ~2012
150925261313018505226311 ~2011
150927083033018541660711 ~2011
150927103433018542068711 ~2011
150932960513018659210311 ~2011
150933584993018671699911 ~2011
1509364774324149836388912 ~2013
150963027233019260544711 ~2011
150970605713019412114311 ~2011
150973238633019464772711 ~2011
150978145193019562903911 ~2011
150985652393019713047911 ~2011
150988453733128...61285714 2024
150990605513019812110311 ~2011
150992740313019854806311 ~2011
1509984666727179724000712 ~2013
150999692819059981568711 ~2012
1510104151112080833208912 ~2012
151010632913020212658311 ~2011
151015887379060953242311 ~2012
Home
4.828.532 digits
e-mail
25-06-01