Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
157575633979454538038311 ~2012
157578540713151570814311 ~2011
157586839433151736788711 ~2011
157597744193151954883911 ~2011
157599398179455963890311 ~2012
1576029269322064409770312 ~2013
157617306833152346136711 ~2011
157624179419457450764711 ~2012
157624566593152491331911 ~2011
1576284802740983404870312 ~2013
157649025113152980502311 ~2011
157659107993153182159911 ~2011
157659845513153196910311 ~2011
157662602993153252059911 ~2011
157672590833153451816711 ~2011
157676461793153529235911 ~2011
157677110531475...54560914 2024
157684512779461070766311 ~2012
157686306233153726124711 ~2011
157687116713153742334311 ~2011
1576914163112615313304912 ~2012
157693256393153865127911 ~2011
157693369913153867398311 ~2011
157700799539462047971911 ~2012
157704092993154081859911 ~2011
Exponent Prime Factor Dig. Year
157707794393154155887911 ~2011
1577085777115770857771112 ~2012
157711187339462671239911 ~2012
157713190433154263808711 ~2011
157722170393154443407911 ~2011
157724876633154497532711 ~2011
157745952233154919044711 ~2011
1577461039334704142864712 ~2013
157746620633154932412711 ~2011
157751013833155020276711 ~2011
157754926193155098523911 ~2011
157757081393155141627911 ~2011
157759415393155188307911 ~2011
157762303313155246066311 ~2011
157765061393155301227911 ~2011
1577715072163108602884112 ~2014
157774047113155480942311 ~2011
157777491713155549834311 ~2011
157778339219466700352711 ~2012
157787005193155740103911 ~2011
157787727833155754556711 ~2011
157791451313155829026311 ~2011
1577936851112623494808912 ~2012
157795369913155907398311 ~2011
1577956741712623653933712 ~2012
Exponent Prime Factor Dig. Year
1577964550947338936527112 ~2014
157797034193155940683911 ~2011
157802080793156041615911 ~2011
157809877793156197555911 ~2011
157811798393156235967911 ~2011
157815275513156305510311 ~2011
157816115393156322307911 ~2011
157817206819469032408711 ~2012
157821598433156431968711 ~2011
157827962033156559240711 ~2011
157830193913156603878311 ~2011
157832326019469939560711 ~2012
1578375880315783758803112 ~2012
157841507033156830140711 ~2011
157847001113156940022311 ~2011
157849891979470993518311 ~2012
157854673193157093463911 ~2011
157863948593157278971911 ~2011
157867759193157355183911 ~2011
157871405033157428100711 ~2011
157882544033157650880711 ~2011
157883812939473028775911 ~2012
157892784233157855684711 ~2011
157894939913157898798311 ~2011
157907144513158142890311 ~2011
Exponent Prime Factor Dig. Year
157908636593158172731911 ~2011
157913206819474792408711 ~2012
157926228233158524564711 ~2011
157926560513158531210311 ~2011
157927336793158546735911 ~2011
1579414903112635319224912 ~2012
1579418776728429537980712 ~2013
157943612939476616775911 ~2012
157947672113158953442311 ~2011
157947831593158956631911 ~2011
1579524934112636199472912 ~2012
1579539572912636316583312 ~2012
1579573944715795739447112 ~2012
157962437633159248752711 ~2011
157972321793159446435911 ~2011
1579807255112638458040912 ~2012
157985614913159712298311 ~2011
157989048113159780962311 ~2011
157992012833159840256711 ~2011
157992020633159840412711 ~2011
157998665393159973307911 ~2011
158001615713160032314311 ~2011
158014450313160289006311 ~2011
158014450913160289018311 ~2011
158014627793160292555911 ~2011
Home
4.828.532 digits
e-mail
25-06-01