Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
157099847993141996959911 ~2011
1571110922912568887383312 ~2012
157111095593142221911911 ~2011
157113379193142267583911 ~2011
157120668139427240087911 ~2012
1571226900715712269007112 ~2012
1571241959912569935679312 ~2012
157126487993142529759911 ~2011
157126797113142535942311 ~2011
157127810993142556219911 ~2011
157128946979427736818311 ~2012
157144367393142887347911 ~2011
1571465368712571722949712 ~2012
157149977993142999559911 ~2011
157150222433143004448711 ~2011
157158654979429519298311 ~2012
157158726113143174522311 ~2011
157170172793143403455911 ~2011
157172631233143452624711 ~2011
157175653433143513068711 ~2011
157180754633143615092711 ~2011
1571808290922005316072712 ~2013
157189023233143780464711 ~2011
157193925113143878502311 ~2011
157194345179431660710311 ~2012
Exponent Prime Factor Dig. Year
157196888393143937767911 ~2011
157215201233144304024711 ~2011
157215618713144312374311 ~2011
157217297391197...06111914 2023
1572276364315722763643112 ~2012
157228524233144570484711 ~2011
157229851193144597023911 ~2011
1572322303712578578429712 ~2012
157240208033144804160711 ~2011
157245412339434724739911 ~2012
157253814113145076282311 ~2011
1572604546325161672740912 ~2013
157260916379435654982311 ~2012
157268106779436086406311 ~2012
157271950793145439015911 ~2011
157280240513145604810311 ~2011
157286102219437166132711 ~2012
157288206713145764134311 ~2011
157288399913145767998311 ~2011
157296474713145929494311 ~2011
157299122393145982447911 ~2011
1573005761322022080658312 ~2013
157309526219438571572711 ~2012
157313504993146270099911 ~2011
157322438993146448779911 ~2011
Exponent Prime Factor Dig. Year
1573303855334612684816712 ~2013
157335183713146703674311 ~2011
157337190779440231446311 ~2012
1573433417912587467343312 ~2012
157348445513146968910311 ~2011
157354678379441280702311 ~2012
1573605107347208153219112 ~2014
157362798419441767904711 ~2012
157365302033147306040711 ~2011
157370275433147405508711 ~2011
157398698393147973967911 ~2011
157399450433147989008711 ~2011
157408470139444508207911 ~2012
157415259113148305182311 ~2011
157420748633148414972711 ~2011
1574229252125187668033712 ~2013
157424611313148492226311 ~2011
157429575019445774500711 ~2012
1574367015747231010471112 ~2014
157437926993148758539911 ~2011
1574465782937787178789712 ~2013
1574538454112596307632912 ~2012
157463839793149276795911 ~2011
157464809993149296199911 ~2011
157466819033149336380711 ~2011
Exponent Prime Factor Dig. Year
157468895033149377900711 ~2011
157469133139448147987911 ~2012
157469727139448183627911 ~2012
157490464793149809295911 ~2011
157502751713150055034311 ~2011
157511099633150221992711 ~2011
157514112113150282242311 ~2011
157521490793150429815911 ~2011
157526830313150536606311 ~2011
157537705313150754106311 ~2011
157541676593150833531911 ~2011
1575442273712603538189712 ~2012
157545911033150918220711 ~2011
157547232233150944644711 ~2011
1575582034315755820343112 ~2012
157562033993151240679911 ~2011
157563115313151262306311 ~2011
157564196393151283927911 ~2011
1575645611937815494685712 ~2013
157565540633151310812711 ~2011
157567469633151349392711 ~2011
157572543233151450864711 ~2011
157572603833151452076711 ~2011
1575730876112605847008912 ~2012
157574502233151490044711 ~2011
Home
4.828.532 digits
e-mail
25-06-01