Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
218608441794372168835911 ~2012
2186166274717489330197712 ~2013
218625681594372513631911 ~2012
2186276793713117660762312 ~2013
218639763834372795276711 ~2012
2186470025939356460466312 ~2014
218661658194373233163911 ~2012
2186725987348107971720712 ~2014
2186750296117494002368912 ~2013
218688071394373761427911 ~2012
2186904650917495237207312 ~2013
218701949994374038999911 ~2012
2187119001713122714010312 ~2013
2187160421952491850125712 ~2014
218730537594374610751911 ~2012
2187375843713124255062312 ~2013
218745862434374917248711 ~2012
218760247434375204948711 ~2012
218766857034375337140711 ~2012
218778507594375570151911 ~2012
218782639314375652786311 ~2012
218794832394375896647911 ~2012
2187993073170015778339312 ~2015
218801570634376031412711 ~2012
218806442394376128847911 ~2012
Exponent Prime Factor Dig. Year
218818732914376374658311 ~2012
218819618514376392370311 ~2012
2188351185735013618971312 ~2014
2188384796917507078375312 ~2013
218844810234376896204711 ~2012
218873346594377466931911 ~2012
218875011714377500234311 ~2012
218885533914377710678311 ~2012
218886850794377737015911 ~2012
218886875034377737500711 ~2012
2188883413313133300479912 ~2013
218888907594377778151911 ~2012
2188963194721889631947112 ~2013
218904568914378091378311 ~2012
218913846114378276922311 ~2012
218930562594378611251911 ~2012
218931423714378628474311 ~2012
218935457994378709159911 ~2012
218935559034378711180711 ~2012
2189379562113136277372712 ~2013
2189723177313138339063912 ~2013
2189739235921897392359112 ~2013
2189774347717518194781712 ~2013
2189798905352555173727312 ~2014
218991785514379835710311 ~2012
Exponent Prime Factor Dig. Year
218996737914379934758311 ~2012
218997992034379959840711 ~2012
219014557314380291146311 ~2012
219019647234380392944711 ~2012
2190609396113143656376712 ~2013
219065772714381315454311 ~2012
219087671034381753420711 ~2012
219094443112949...04260714 2023
219099739194381994783911 ~2012
2191022627952584543069712 ~2014
2191047706717528381653712 ~2013
2191111791135057788657712 ~2014
2191223123370119139945712 ~2015
219134780034382695600711 ~2012
219138452034382769040711 ~2012
219138602394382772047911 ~2012
219143673114382873462311 ~2012
219146874234382937484711 ~2012
219152574114383051482311 ~2012
219158311314383166226311 ~2012
2191609460917532875687312 ~2013
2191702176113150213056712 ~2013
219195227994383904559911 ~2012
219214383234384287664711 ~2012
219230620434384612408711 ~2012
Exponent Prime Factor Dig. Year
219235341594384706831911 ~2012
219244904034384898080711 ~2012
2192485633713154913802312 ~2013
2192555209717540441677712 ~2013
219259060914385181218311 ~2012
219265078314385301566311 ~2012
2192672301135082756817712 ~2014
219268232634385364652711 ~2012
2192776626113156659756712 ~2013
219285444834385708896711 ~2012
219285831131087...22404914 2023
219286395594385727911911 ~2012
219292909314385858186311 ~2012
219310857234386217144711 ~2012
2193212878113159277268712 ~2013
219321918714386438374311 ~2012
219337493994386749879911 ~2012
219360212514387204250311 ~2012
2193604048717548832389712 ~2013
2193610559917548884479312 ~2013
2193729583717549836669712 ~2013
219377348034387546960711 ~2012
219379060194387581203911 ~2012
219391600914387832018311 ~2012
219397481634387949632711 ~2012
Home
4.724.182 digits
e-mail
25-04-13