Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
160286090993205721819911 ~2011
1602983412716029834127112 ~2012
160304088713206081774311 ~2011
160307944913206158898311 ~2011
160312926593206258531911 ~2011
160322351393206447027911 ~2011
160335823433206716468711 ~2011
160341255713206825114311 ~2011
160343163593206863271911 ~2011
160343841179620630470311 ~2012
160360697939621641875911 ~2012
160378512419622710744711 ~2012
160380287033207605740711 ~2011
1603810126948114303807112 ~2014
160387446419623246784711 ~2012
160409946593208198931911 ~2011
1604160782367374752856712 ~2014
160416892913208337858311 ~2011
160418601671175...02411115 2023
1604193487712833547901712 ~2012
160426558313208531166311 ~2011
160429805993208596119911 ~2011
160432068979625924138311 ~2012
160432652419625959144711 ~2012
1604367016316043670163112 ~2012
Exponent Prime Factor Dig. Year
1604412728922461778204712 ~2013
160441653233208833064711 ~2011
160452168419627130104711 ~2012
160456424513209128490311 ~2011
160459609791569...83746314 2023
160460872313209217446311 ~2011
160464974513209299490311 ~2011
160472917913209458358311 ~2011
160488684419629321064711 ~2012
1604905299116049052991112 ~2012
160491127913209822558311 ~2011
1604991157112839929256912 ~2012
160501720913210034418311 ~2011
160502656913210053138311 ~2011
160502882033210057640711 ~2011
1605069276716050692767112 ~2012
160517837179631070230311 ~2012
160519209593210384191911 ~2011
1605249006125683984097712 ~2013
160531869233210637384711 ~2011
1605382420112843059360912 ~2012
160560893033211217860711 ~2011
160564555379633873322311 ~2012
160568743139634124587911 ~2012
1605719029722480066415912 ~2013
Exponent Prime Factor Dig. Year
160572835313211456706311 ~2011
160573024913211460498311 ~2011
160576639433211532788711 ~2011
160581033713211620674311 ~2011
160593096113211861922311 ~2011
160596756233211935124711 ~2011
160604108513212082170311 ~2011
160605364913212107298311 ~2011
160607726393212154527911 ~2011
160608626513212172530311 ~2011
160611298913212225978311 ~2011
160611744713212234894311 ~2011
160631274713212625494311 ~2011
160633938833212678776711 ~2011
160635076793212701535911 ~2011
160643623339638617399911 ~2012
160649449433212988988711 ~2011
160654023419639241404711 ~2012
160657680833213153616711 ~2011
1606625690912853005527312 ~2012
1606734104912853872839312 ~2012
160695487793213909755911 ~2011
1606956504728925217084712 ~2013
160705516433214110328711 ~2011
160721075033214421500711 ~2011
Exponent Prime Factor Dig. Year
160727205233214544104711 ~2011
160728614819643716888711 ~2012
160734201713214684034311 ~2011
1607343775325717500404912 ~2013
1607364459116073644591112 ~2012
1607424214712859393717712 ~2012
160750264913215005298311 ~2011
160750970633215019412711 ~2011
1607573890112860591120912 ~2012
1607644991967521089659912 ~2014
160766123993215322479911 ~2011
1607743897712861951181712 ~2012
160784664833215693296711 ~2011
1607853178325725650852912 ~2013
160785407339647124439911 ~2012
1607928540716079285407112 ~2012
160811235113216224702311 ~2011
160816084579648965074311 ~2012
160816147793216322955911 ~2011
1608232201738597572840912 ~2013
160823477633216469552711 ~2011
160827610913216552218311 ~2011
160827746513216554930311 ~2011
1608322049348249661479112 ~2014
160833030113216660602311 ~2011
Home
4.828.532 digits
e-mail
25-06-01