Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
169761868913395237378311 ~2011
169765232993395304659911 ~2011
1697662020716976620207112 ~2013
169774289393395485787911 ~2011
169782373433395647468711 ~2011
1697920900316979209003112 ~2013
169793599793395871995911 ~2011
169796868593395937371911 ~2011
169801466633396029332711 ~2011
1698035289710188211738312 ~2012
1698075765710188454594312 ~2012
169808153393396163067911 ~2011
169821399593396427991911 ~2011
169822075913396441518311 ~2011
169826537033396530740711 ~2011
169835100233396702004711 ~2011
169849720193396994403911 ~2011
169849937993396998759911 ~2011
169860950393397219007911 ~2011
169861832993397236659911 ~2011
169869414233397388284711 ~2011
169872501833397450036711 ~2011
169885924793397718495911 ~2011
1698867390767954695628112 ~2014
1698906529723784691415912 ~2013
Exponent Prime Factor Dig. Year
169893002993397860059911 ~2011
169893353513397867070311 ~2011
1698956482940774955589712 ~2014
1699104181940778500365712 ~2014
1699126413127186022609712 ~2013
169930635233398612704711 ~2011
169938420233398768404711 ~2011
1699424893310196549359912 ~2012
169958326313399166526311 ~2011
1699640767113597126136912 ~2012
169977486713399549734311 ~2011
1699785025710198710154312 ~2012
169988685593399773711911 ~2011
169997998793399959975911 ~2011
169998564113399971282311 ~2011
170001181193400023623911 ~2011
170010302393400206047911 ~2011
170011865993400237319911 ~2011
170017436513400348730311 ~2011
170019970793400399415911 ~2011
170024958593400499171911 ~2011
170029473233400589464711 ~2011
170031661433400633228711 ~2011
170063659134703...11535914 2023
1700677097310204062583912 ~2012
Exponent Prime Factor Dig. Year
1700683713710204102282312 ~2012
170073110633401462212711 ~2011
170073422513401468450311 ~2011
170077233113401544662311 ~2011
1700915790137420147382312 ~2013
170098601633401972032711 ~2011
170103225233402064504711 ~2011
170107078913402141578311 ~2011
170118676793402373535911 ~2011
170129124593402582491911 ~2011
170132975513402659510311 ~2011
170142521633402850432711 ~2011
170152217393403044347911 ~2011
170152933433403058668711 ~2011
170156842433403136848711 ~2011
170161555313403231106311 ~2011
170163232793403264655911 ~2011
1701708715144244426592712 ~2014
170174063033403481260711 ~2011
170175775433403515508711 ~2011
1701857653940844583693712 ~2014
1701898235913615185887312 ~2012
1701918520110211511120712 ~2012
170205745313404114906311 ~2011
1702091550110212549300712 ~2012
Exponent Prime Factor Dig. Year
1702190172727235042763312 ~2013
170220469913404409398311 ~2011
170224502393404490047911 ~2011
1702258104740854194512912 ~2014
170235965993404719319911 ~2011
170237706233404754124711 ~2011
170241873713404837474311 ~2011
170254591313405091826311 ~2011
170258413313405168266311 ~2011
1702596865327241549844912 ~2013
170260250633405205012711 ~2011
170268426113405368522311 ~2011
170271066833405421336711 ~2011
170271216233405424324711 ~2011
1702723789713621790317712 ~2012
170273420633405468412711 ~2011
1702801846327244829540912 ~2013
170290315313405806306311 ~2011
1702907716713623261733712 ~2012
170293191233405863824711 ~2011
170327848433406556968711 ~2011
1703280442317032804423112 ~2013
170344992593406899851911 ~2011
170354802233407096044711 ~2011
1703678659710222071958312 ~2012
Home
4.828.532 digits
e-mail
25-06-01