Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
170374780193407495603911 ~2011
170381005313407620106311 ~2011
1703843877710223063266312 ~2012
170384525513407690510311 ~2011
170384544833407690896711 ~2011
170400416633408008332711 ~2011
170400982793408019655911 ~2011
170411770193408235403911 ~2011
1704184632110225107792712 ~2012
170433674993408673499911 ~2011
170435287313408705746311 ~2011
1704356527713634852221712 ~2012
170436038033408720760711 ~2011
170437644833408752896711 ~2011
1704494199710226965198312 ~2012
170458163633409163272711 ~2011
1704589279310227535675912 ~2012
170459860313409197206311 ~2011
170475630833409512616711 ~2011
1704822469113638579752912 ~2012
170494638593409892771911 ~2011
170498987511053...42811914 2023
170501640113410032802311 ~2011
170511235433410224708711 ~2011
170528133113410562662311 ~2011
Exponent Prime Factor Dig. Year
170530266713410605334311 ~2011
170533408313410668166311 ~2011
170537682113410753642311 ~2011
1705470957117054709571112 ~2013
170564727113411294542311 ~2011
170569581833411391636711 ~2011
170571765833411435316711 ~2011
1705813348713646506789712 ~2012
170590330313411806606311 ~2011
1705937103117059371031112 ~2013
170594273033411885460711 ~2011
170594783633411895672711 ~2011
1706096893710236581362312 ~2012
170610719033412214380711 ~2011
170618832593412376651911 ~2011
170619248513412384970311 ~2011
170626223033412524460711 ~2011
170627171513412543430311 ~2011
170638011593412760231911 ~2011
170638635713412772714311 ~2011
170642239193412844783911 ~2011
170644703033412894060711 ~2011
1706447177310238683063912 ~2012
170645882633412917652711 ~2011
1706534489913652275919312 ~2012
Exponent Prime Factor Dig. Year
1706574832110239448992712 ~2012
170658203633413164072711 ~2011
170665705193413314103911 ~2011
170678243633413564872711 ~2011
1706870420913654963367312 ~2012
170688688913413773778311 ~2011
170697469433413949388711 ~2011
170697776033413955520711 ~2011
170702458913414049178311 ~2011
1707112273740970694568912 ~2014
170716874393414337487911 ~2011
170717386793414347735911 ~2011
170719216313414384326311 ~2011
1707299195913658393567312 ~2012
170731214633414624292711 ~2011
170748582113414971642311 ~2011
170750456393415009127911 ~2011
170757464633415149292711 ~2011
170763018713415260374311 ~2011
170764608113415292162311 ~2011
1707706489710246238938312 ~2012
1707840325710247041954312 ~2012
170785003913415700078311 ~2011
170788022633415760452711 ~2011
170790422033415808440711 ~2011
Exponent Prime Factor Dig. Year
170790608993415812179911 ~2011
1707933415723911067819912 ~2013
170795550713415911014311 ~2011
1708062881310248377287912 ~2012
1708064160110248384960712 ~2012
170811492233416229844711 ~2011
170821772393416435447911 ~2011
1708244529751247335891112 ~2014
170836131593416722631911 ~2011
170844424433416888488711 ~2011
170844879233416897584711 ~2011
1708512777117085127771112 ~2013
1708569613710251417682312 ~2012
170867151833417343036711 ~2011
170870006993417400139911 ~2011
1708820011713670560093712 ~2012
170905757393418115147911 ~2011
170907081713418141634311 ~2011
1709126602110254759612712 ~2012
1709193736713673549893712 ~2012
170919654833418393096711 ~2011
170920050833418401016711 ~2011
170923011233418460224711 ~2011
1709260630113674085040912 ~2012
1709366150913674929207312 ~2012
Home
4.828.532 digits
e-mail
25-06-01