Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1753329331114026634648912 ~2012
175335587993506711759911 ~2011
175341943433506838868711 ~2011
175350939233507018784711 ~2011
175352961713507059234311 ~2011
175358368193507167363911 ~2011
175361692793507233855911 ~2011
175403456393508069127911 ~2011
175406441393508128827911 ~2011
175416082913508321658311 ~2011
1754179967914033439743312 ~2012
175428377033508567540711 ~2011
175434914993508698299911 ~2011
175443640913508872818311 ~2011
175445737313508914746311 ~2011
175451126993509022539911 ~2011
175454216513509084330311 ~2011
175462128113509242562311 ~2011
175464508913509290178311 ~2011
1754668060110528008360712 ~2012
1754780100110528680600712 ~2012
175478719313509574386311 ~2011
175479223193509584463911 ~2011
1754795723310528774339912 ~2012
175481795033509635900711 ~2011
Exponent Prime Factor Dig. Year
175492807793509856155911 ~2011
1755069738717550697387112 ~2013
175516746713510334934311 ~2011
175519059713510381194311 ~2011
175519886513510397730311 ~2011
1755216663710531299982312 ~2012
175530304313510606086311 ~2011
175541240393510824807911 ~2011
175546982633510939652711 ~2011
175562371313511247426311 ~2011
1755636222110533817332712 ~2012
175565195033511303900711 ~2011
175568163233511363264711 ~2011
1755763388924580687444712 ~2013
175577132633511542652711 ~2011
175578664793511573295911 ~2011
1756087049310536522295912 ~2012
1756104064110536624384712 ~2012
175616175713512323514311 ~2011
175616281313512325626311 ~2011
1756204981114049639848912 ~2012
175626910313512538206311 ~2011
175627570313512551406311 ~2011
1756292345324588092834312 ~2013
175631755793512635115911 ~2011
Exponent Prime Factor Dig. Year
1756320742114050565936912 ~2012
175632512393512650247911 ~2011
1756360135310538160811912 ~2012
175640404793512808095911 ~2011
175647003713512940074311 ~2011
175651921193513038423911 ~2011
175666529033513330580711 ~2011
175670519513513410390311 ~2011
175682758313513655166311 ~2011
1756891387724596479427912 ~2013
1756912183114055297464912 ~2012
1756922788714055382309712 ~2012
175694000033513880000711 ~2011
175721082713514421654311 ~2011
1757315596114058524768912 ~2012
175739514713514790294311 ~2011
175746438113514928762311 ~2011
1757600899714060807197712 ~2012
175763077193515261543911 ~2011
175768170593515363411911 ~2011
1757707661310546245967912 ~2012
175776146513515522930311 ~2011
175783733993515674679911 ~2011
1757910891710547465350312 ~2012
175795285913515905718311 ~2011
Exponent Prime Factor Dig. Year
175796606393515932127911 ~2011
175798322393515966447911 ~2011
175801923233516038464711 ~2011
175802493713516049874311 ~2011
1758038878114064311024912 ~2012
175806908393516138167911 ~2011
175812116393516242327911 ~2011
175812182993516243659911 ~2011
175813096313516261926311 ~2011
175821688193516433763911 ~2011
1758499247324618989462312 ~2013
1758817114110552902684712 ~2012
1758937685310553626111912 ~2012
175899566473489...98764914 2023
1759092082114072736656912 ~2012
175921051193518421023911 ~2011
1759230624110555383744712 ~2012
175936363313518727266311 ~2011
175949325713518986514311 ~2011
1759617655742230823736912 ~2014
175976571233519531424711 ~2011
175982646113519652922311 ~2011
175990468193519809363911 ~2011
175990994033519819880711 ~2011
1759990018114079920144912 ~2013
Home
4.828.532 digits
e-mail
25-06-01