Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
240290848794805816975911 ~2012
240296110434805922208711 ~2012
240306127794806122555911 ~2012
240307190394806143807911 ~2012
240307606194806152123911 ~2012
240312108234806242164711 ~2012
2403349693714420098162312 ~2013
240336564594806731291911 ~2012
240345668514806913370311 ~2012
240357963594807159271911 ~2012
2403594604114421567624712 ~2013
240365297394807305947911 ~2012
2403706597924037065979112 ~2014
240378508914807570178311 ~2012
2403829949919230639599312 ~2014
2403881485338462103764912 ~2014
240396705594807934111911 ~2012
240397533234807950664711 ~2012
240400194114808003882311 ~2012
240448196514808963930311 ~2012
240452738394809054767911 ~2012
240487247514809744950311 ~2012
240501004794810020095911 ~2012
240504789234810095784711 ~2012
2405096185338481538964912 ~2014
Exponent Prime Factor Dig. Year
240546526794810930535911 ~2012
240547660314810953206311 ~2012
2405492764719243942117712 ~2014
240564750114811295002311 ~2012
240566882514811337650311 ~2012
2405931942114435591652712 ~2013
240593205834811864116711 ~2012
240597896812624...41971115 2023
240616719234812334384711 ~2012
240617473314812349466311 ~2012
240626394834812527896711 ~2012
2406345431333688836038312 ~2014
2406512347314439074083912 ~2013
2406623947352945726840712 ~2015
2406661495314439968971912 ~2013
240675162234813503244711 ~2012
240676236594813524731911 ~2012
240679272234813585444711 ~2012
240682534794813650695911 ~2012
2407163270933700285792712 ~2014
240716373714814327474311 ~2012
240716556594814331131911 ~2012
240744451794814889035911 ~2012
240744790434814895808711 ~2012
240753294834815065896711 ~2012
Exponent Prime Factor Dig. Year
240765430194815308603911 ~2012
2407674953314446049719912 ~2013
240775628634815512572711 ~2012
240784330914815686618311 ~2012
2407942132114447652792712 ~2013
2408022637719264181101712 ~2014
240840562194816811243911 ~2012
240856726314817134526311 ~2012
240871752234817435044711 ~2012
240873506034817470120711 ~2012
2408835511924088355119112 ~2014
240885172314817703446311 ~2012
240894744594817894891911 ~2012
240905138994818102779911 ~2012
2409153847733728153867912 ~2014
240915539034818310780711 ~2012
240917672634818353452711 ~2012
2409283147314455698883912 ~2013
2409357683919274861471312 ~2014
240936005394818720107911 ~2012
2409486871119275894968912 ~2014
240950242314819004846311 ~2012
2409527555314457165331912 ~2013
240953292114819065842311 ~2012
240958979994819179599911 ~2012
Exponent Prime Factor Dig. Year
240959075514819181510311 ~2012
240960472434819209448711 ~2012
240967383114819347662311 ~2012
240970662234819413244711 ~2012
240973795434819475908711 ~2012
240979433394819588667911 ~2012
240993630594819872611911 ~2012
241010780514820215610311 ~2012
241015116714820302334311 ~2012
241038852714820777054311 ~2012
241068235194821364703911 ~2012
241073227794821464555911 ~2012
241103852034822077040711 ~2012
241104669594822093391911 ~2012
241109736714822194734311 ~2012
241118030994822360619911 ~2012
241131598314822631966311 ~2012
241131835194822636703911 ~2012
2411384578114468307468712 ~2013
2411438405314468630431912 ~2013
241159991634823199832711 ~2012
241165043394823300867911 ~2012
2411681611119293452888912 ~2014
241168702314823374046311 ~2012
241170284514823405690311 ~2012
Home
4.724.182 digits
e-mail
25-04-13