Home ResellersPanel.com - Free Reseller Hosting Program, Private Label, Turn Key, API e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
224772435594495448711911 ~2012
224780258034495605160711 ~2012
224784259932139...54533714 2024
224786342034495726840711 ~2012
224793560514495871210311 ~2012
2248007575313488045451912 ~2013
224818474914496369498311 ~2012
224858402034497168040711 ~2012
2248675276322486752763112 ~2014
224879608794497592175911 ~2012
2248821760113492930560712 ~2013
224894969994497899399911 ~2012
2248954721953974913325712 ~2015
224899609914497992198311 ~2012
224902595634498051912711 ~2012
224954431434499088628711 ~2012
2249573485335993175764912 ~2014
224959602114499192042311 ~2012
224969026194499380523911 ~2012
225015590514500311810311 ~2012
2250162421713500974530312 ~2013
225016322034500326440711 ~2012
225024392034500487840711 ~2012
225029905794500598115911 ~2012
225032997234500659944711 ~2012
Exponent Prime Factor Dig. Year
2250335767313502014603912 ~2013
225037446714500748934311 ~2012
225038322594500766451911 ~2012
2250508417118004067336912 ~2013
225053941434501078828711 ~2012
225055151994501103039911 ~2012
225060881514501217630311 ~2012
225062423514501248470311 ~2012
225089717634501794352711 ~2012
2251101995313506611971912 ~2013
2251300066718010400533712 ~2013
2251328980322513289803112 ~2014
225145891434502917828711 ~2012
225158710434503174208711 ~2012
225169852794503397055911 ~2012
225170931714503418634311 ~2012
225180944514503618890311 ~2012
225183160914503663218311 ~2012
225187156794503743135911 ~2012
2251875553713511253322312 ~2013
225192966714503859334311 ~2012
225212719314504254386311 ~2012
2252129368754051104848912 ~2015
225217571514504351430311 ~2012
225217733994504354679911 ~2012
Exponent Prime Factor Dig. Year
225242520834504850416711 ~2012
2252450260718019602085712 ~2013
225253226634505064532711 ~2012
225263109594505262191911 ~2012
2252641585940547548546312 ~2014
225298936434505978728711 ~2012
225300516114506010322311 ~2012
225300747834506014956711 ~2012
225300994794506019895911 ~2012
225301682994506033659911 ~2012
2253087613313518525679912 ~2013
225309428394506188567911 ~2012
225317643234506352864711 ~2012
225319998594506399971911 ~2012
225330468594506609371911 ~2012
225347124114506942482311 ~2012
225350173914507003478311 ~2012
225360689034507213780711 ~2012
2253612121922536121219112 ~2014
225361963794507239275911 ~2012
2253648427713521890566312 ~2013
2253733351922537333519112 ~2014
2253759367713522556206312 ~2013
225392246514507844930311 ~2012
2253933257313523599543912 ~2013
Exponent Prime Factor Dig. Year
2253964919313523789515912 ~2013
2254046287118032370296912 ~2013
225406023234508120464711 ~2012
225406524114508130482311 ~2012
225422023794508440475911 ~2012
2254265733754102377608912 ~2015
225437807994508756159911 ~2012
225452943714509058874311 ~2012
225471396234509427924711 ~2012
225478338834509566776711 ~2012
225486516234509730324711 ~2012
225492639114509852782311 ~2012
225512697594510253951911 ~2012
225520811994510416239911 ~2012
225522975834510459516711 ~2012
225543212994510864259911 ~2012
2255483341713532900050312 ~2013
225557107314511142146311 ~2012
225564701994511294039911 ~2012
225571180194511423603911 ~2012
225598933194511978663911 ~2012
225623413914512468278311 ~2012
225638038314512760766311 ~2012
225639558714512791174311 ~2012
225641049714512820994311 ~2012
Home
4.768.925 digits
e-mail
25-05-04