Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
259378099795187561995911 ~2012
259385809315187716186311 ~2012
259393539115187870782311 ~2012
259394491435187889828711 ~2012
259403390635188067812711 ~2012
259408310515188166210311 ~2012
2594089549962258149197712 ~2015
259409613115188192262311 ~2012
259411864435188237288711 ~2012
259415789635188315792711 ~2012
259429564915188591298311 ~2012
259453476715189069534311 ~2012
259454658115189093162311 ~2012
259456673995189133479911 ~2012
259468276195189365523911 ~2012
2594705675336325879454312 ~2014
259501151515190023030311 ~2012
259510057795190201155911 ~2012
259520226235190404524711 ~2012
259546142395190922847911 ~2012
259550764315191015286311 ~2012
259556777635191135552711 ~2012
2595604531715573627190312 ~2014
2595664013920765312111312 ~2014
2595902590720767220725712 ~2014
Exponent Prime Factor Dig. Year
2595905857715575435146312 ~2014
2595939384115575636304712 ~2014
259594768435191895368711 ~2012
2595955484920767643879312 ~2014
2595963887962303133309712 ~2015
259597769395191955387911 ~2012
259622260915192445218311 ~2012
2596228450720769827605712 ~2014
2596284593315577707559912 ~2014
2596322449315577934695912 ~2014
2596329133120770633064912 ~2014
259646713915192934278311 ~2012
2596568530746738233552712 ~2015
2596715521120773724168912 ~2014
259684252435193685048711 ~2012
2596979806120775838448912 ~2014
259706708395194134167911 ~2012
2597179739920777437919312 ~2014
2597204703715583228222312 ~2014
259737692035194753840711 ~2012
259788959035195779180711 ~2012
2597944894115587669364712 ~2014
259814382115196287642311 ~2012
259817091115196341822311 ~2012
259821042235196420844711 ~2012
Exponent Prime Factor Dig. Year
259822595995196451919911 ~2012
2598294959315589769755912 ~2014
259834759435196695188711 ~2012
259893806995197876139911 ~2012
259901928595198038571911 ~2012
259935391795198707835911 ~2012
259942223395198844467911 ~2012
259955992195199119843911 ~2012
2599889687362397352495312 ~2015
259994360515199887210311 ~2012
260016626635200332532711 ~2012
2600263660120802109280912 ~2014
260026698595200533971911 ~2012
260030230195200604603911 ~2012
2600320915146805776471912 ~2015
260042358715200847174311 ~2012
2600528215120804225720912 ~2014
260082103795201642075911 ~2012
260088122395201762447911 ~2012
260095598995201911979911 ~2012
260101079995202021599911 ~2012
260104880395202097607911 ~2012
260121172915202423458311 ~2012
260128778995202575579911 ~2012
260135839195202716783911 ~2012
Exponent Prime Factor Dig. Year
260140622515202812450311 ~2012
260159898595203197971911 ~2012
2601617040726016170407112 ~2014
260163512395203270247911 ~2012
260163521635203270432711 ~2012
2601663898720813311189712 ~2014
2601876643715611259862312 ~2014
260188498195203769963911 ~2012
260192624035203852480711 ~2012
260193649195203872983911 ~2012
260202305395204046107911 ~2012
260218036795204360735911 ~2012
260224556395204491127911 ~2012
260264963995205299279911 ~2012
260271280795205425615911 ~2012
260276060515205521210311 ~2012
2602798222115616789332712 ~2014
260305035115206100702311 ~2012
260309575315206191506311 ~2012
260313671395206273427911 ~2012
2603361256720826890053712 ~2014
2603387899120827103192912 ~2014
260341230235206824604711 ~2012
260356539115207130782311 ~2012
260389792435207795848711 ~2012
Home
4.724.182 digits
e-mail
25-04-13