Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
201545123514030902470311 ~2011
201557175114031143502311 ~2011
2015582241712093493450312 ~2013
2015590396116124723168912 ~2013
2015708514112094251084712 ~2013
2015724623328220144726312 ~2014
201581765394031635307911 ~2011
2015821433916126571471312 ~2013
2015923623120159236231112 ~2013
2016045345132256725521712 ~2014
201614976594032299531911 ~2011
201626535234032530704711 ~2011
201636653394032733067911 ~2011
2016396930748393526336912 ~2014
201648205794032964115911 ~2011
201669633594033392671911 ~2011
2016723936112100343616712 ~2013
2016772243360503167299112 ~2014
201702138594034042771911 ~2011
201705269634034105392711 ~2011
201707914794034158295911 ~2011
201716293434034325868711 ~2011
2017392844348417428263312 ~2014
201741745194034834903911 ~2011
201743623194034872463911 ~2011
Exponent Prime Factor Dig. Year
201744098514034881970311 ~2011
2017460176320174601763112 ~2013
201762814914035256298311 ~2011
201767808594035356171911 ~2011
201769944714035398894311 ~2011
2017721088112106326528712 ~2013
2017779599312106677595912 ~2013
201780985194035619703911 ~2011
201782301234035646024711 ~2011
201809697234036193944711 ~2011
2018131771312108790627912 ~2013
2018147500716145180005712 ~2013
2018176539712109059238312 ~2013
201823366794036467335911 ~2011
2018340420112110042520712 ~2013
201844149834036882996711 ~2011
201854052114037081042311 ~2011
2018689557712112137346312 ~2013
201870152394037403047911 ~2011
201875987514037519750311 ~2011
201876372714037527454311 ~2011
201879181434037583628711 ~2011
2018804169712112825018312 ~2013
201888737514037774750311 ~2011
201890526714037810534311 ~2011
Exponent Prime Factor Dig. Year
201933030234038660604711 ~2011
201933452994038669059911 ~2011
201938691594038773831911 ~2011
201955486794039109735911 ~2011
2019664999712117989998312 ~2013
201968713914039374278311 ~2011
201976056714039521134311 ~2011
2019766857120197668571112 ~2013
201978762714039575254311 ~2011
2019905500320199055003112 ~2013
2020264555312121587331912 ~2013
202031800314040636006311 ~2011
202034337594040686751911 ~2011
202036316034040726320711 ~2011
2020467553116163740424912 ~2013
2020471988916163775911312 ~2013
2020577514112123465084712 ~2013
2020590073152535341900712 ~2014
202067857194041357143911 ~2011
2020810642320208106423112 ~2013
202082895114041657902311 ~2011
202090410714041808214311 ~2011
202093898394041877967911 ~2011
202094413314041888266311 ~2011
202095481194041909623911 ~2011
Exponent Prime Factor Dig. Year
202100792514042015850311 ~2011
202102371114042047422311 ~2011
2021114563116168916504912 ~2013
2021250224916170001799312 ~2013
202149581994042991639911 ~2011
2021511635916172093087312 ~2013
202151230314043024606311 ~2011
202152988194043059763911 ~2011
2021581553312129489319912 ~2013
2021639526720216395267112 ~2013
2021666947712130001686312 ~2013
202169046714043380934311 ~2011
202171579314043431586311 ~2011
2021798019712130788118312 ~2013
202184228634043684572711 ~2011
2021912242116175297936912 ~2013
202193684514043873690311 ~2011
2022191202732355059243312 ~2014
202224800394044496007911 ~2011
2022293020716178344165712 ~2013
2022309014916178472119312 ~2013
202248627714044972554311 ~2011
202249260834044985216711 ~2011
2022709865312136259191912 ~2013
202271504394045430087911 ~2011
Home
4.828.532 digits
e-mail
25-06-01