Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
308903583716178071674311 ~2013
308909437196178188743911 ~2013
308910488036178209760711 ~2013
3089504215124716033720912 ~2014
308964887396179297747911 ~2013
3089775503343256857046312 ~2015
308979523316179590466311 ~2013
3089933012924719464103312 ~2014
3089962000118539772000712 ~2014
308998769636179975392711 ~2013
309005354996180107099911 ~2013
309031148396180622967911 ~2013
309045643316180912866311 ~2013
309047314916180946298311 ~2013
3090518464349448295428912 ~2015
3090615103718543690622312 ~2014
309062805716181256114311 ~2013
3090692134118544152804712 ~2014
309096459716181929194311 ~2013
309110518196182210363911 ~2013
309120739316182414786311 ~2013
309120937916182418758311 ~2013
3091210125718547260754312 ~2014
3091309507718547857046312 ~2014
3091310928730913109287112 ~2015
Exponent Prime Factor Dig. Year
309133861316182677226311 ~2013
3091450123930914501239112 ~2015
309160370516183207410311 ~2013
309170726036183414520711 ~2013
309186727316183734546311 ~2013
309194226596183884531911 ~2013
309218166836184363336711 ~2013
309232184396184643687911 ~2013
309233695916184673918311 ~2013
3092357164330923571643112 ~2015
309243485516184869710311 ~2013
309256556396185131127911 ~2013
3092667864168038693010312 ~2015
3092712981718556277890312 ~2014
309283355636185667112711 ~2013
309284575196185691503911 ~2013
309330038516186600770311 ~2013
309343262396186865247911 ~2013
309347905436186958108711 ~2013
3093696293924749570351312 ~2014
309382311716187646234311 ~2013
3093854224118563125344712 ~2014
3094050121318564300727912 ~2014
3094198163318565188979912 ~2014
3094433581724755468653712 ~2014
Exponent Prime Factor Dig. Year
309484753916189695078311 ~2013
309486776036189735520711 ~2013
309504831596190096631911 ~2013
3095064127718570384766312 ~2014
3095120665318570723991912 ~2014
309557218436191144368711 ~2013
309572966516191459330311 ~2013
309582368996191647379911 ~2013
309582837716191656754311 ~2013
309585464996191709299911 ~2013
309592365236191847304711 ~2013
309601848836192036976711 ~2013
3096109088924768872711312 ~2014
3096139651718576837910312 ~2014
3096572234924772577879312 ~2014
309673258436193465168711 ~2013
309675364196193507283911 ~2013
309687559916193751198311 ~2013
3096899890124775199120912 ~2014
309690926996193818539911 ~2013
309717035516194340710311 ~2013
309727689236194553784711 ~2013
309730129796194602595911 ~2013
309750222836195004456711 ~2013
309757169636195143392711 ~2013
Exponent Prime Factor Dig. Year
309773902916195478058311 ~2013
309784257833252...07215114 2023
3097990709924783925679312 ~2014
309809534396196190687911 ~2013
3098171442755767085968712 ~2015
309836913836196738276711 ~2013
309843560996196871219911 ~2013
309844396796196887935911 ~2013
309869513516197390270311 ~2013
3098721285718592327714312 ~2014
309876114116197522282311 ~2013
309889781996197795639911 ~2013
3099034837724792278701712 ~2014
309933582116198671642311 ~2013
309948601316198972026311 ~2013
309974311916199486238311 ~2013
309981484796199629695911 ~2013
309985139516199702790311 ~2013
309986428916199728578311 ~2013
309990000836199800016711 ~2013
3099998532168199967706312 ~2015
310006524116200130482311 ~2013
310024536236200490724711 ~2013
310058029916201160598311 ~2013
310061479796201229595911 ~2013
Home
4.724.182 digits
e-mail
25-04-13