Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
290477551795809551035911 ~2013
290502275515810045510311 ~2013
2905175407152293157327912 ~2015
290524289035810485780711 ~2013
2905259319717431555918312 ~2014
2905357813123242862504912 ~2014
2905422237129054222371112 ~2014
290545368115810907362311 ~2013
290553457435811069148711 ~2013
290573607235811472144711 ~2013
2905749969717434499818312 ~2014
2905841179929058411799112 ~2014
2906104477317436626863912 ~2014
290614743715812294874311 ~2013
2906165064769747961552912 ~2015
290624959915812499198311 ~2013
290643771835812875436711 ~2013
2906704825123253638600912 ~2014
290674077235813481544711 ~2013
290695698715813913974311 ~2013
2907276545923258212367312 ~2014
290742800995814856019911 ~2013
290744722915814894458311 ~2013
2907458444923259667559312 ~2014
290751733315815034666311 ~2013
Exponent Prime Factor Dig. Year
290752586035815051720711 ~2013
290757925795815158515911 ~2013
290762958235815259164711 ~2013
290787193915815743878311 ~2013
2907978436117447870616712 ~2014
290821046995816420939911 ~2013
290850558595817011171911 ~2013
2909264926329092649263112 ~2014
290948641195818972823911 ~2013
290950069315819001386311 ~2013
2909578144723276625157712 ~2014
291004574995820091499911 ~2013
291005244715820104894311 ~2013
291008129635820162592711 ~2013
2910432659317462595955912 ~2014
2910638917740748944847912 ~2015
291098522515821970450311 ~2013
291110447515822208950311 ~2013
291117147595822342951911 ~2013
2911317708746581083339312 ~2015
2911580914117469485484712 ~2014
291178369915823567398311 ~2013
291197621035823952420711 ~2013
291211487995824229759911 ~2013
291220224115824404482311 ~2013
Exponent Prime Factor Dig. Year
2912215548117473293288712 ~2014
291230923915824618478311 ~2013
291245032795824900655911 ~2013
291256024795825120495911 ~2013
291262386715825247734311 ~2013
291276796012819...85376914 2025
291291659515825833190311 ~2013
291296607235825932144711 ~2013
291310710715826214214311 ~2013
291318845995826376919911 ~2013
291339221995826784439911 ~2013
291378044995827560899911 ~2013
291390116515827802330311 ~2013
291392525995827850519911 ~2013
291392987035827859740711 ~2013
291400959235828019184711 ~2013
291416194435828323888711 ~2013
291428931595828578631911 ~2013
291450544435829010888711 ~2013
2914527312117487163872712 ~2014
2914536532117487219192712 ~2014
291454678435829093568711 ~2013
291455481115829109622311 ~2013
291463679035829273580711 ~2013
291473817235829476344711 ~2013
Exponent Prime Factor Dig. Year
291493810915829876218311 ~2013
291498550195829971003911 ~2013
291510673315830213466311 ~2013
291523008115830460162311 ~2013
291533662795830673255911 ~2013
291538298995830765979911 ~2013
2915475493123323803944912 ~2014
2915816409717494898458312 ~2014
291596115835831922316711 ~2013
291604680595832093611911 ~2013
2916278706117497672236712 ~2014
291636481195832729623911 ~2013
2916673138117500038828712 ~2014
2916748777317500492663912 ~2014
291692005195833840103911 ~2013
291703526395834070527911 ~2013
291711845995834236919911 ~2013
291712189315834243786311 ~2013
291727613395834552267911 ~2013
291730352635834607052711 ~2013
2917439685746679034971312 ~2015
291751465435835029308711 ~2013
291757987195835159743911 ~2013
291781010635835620212711 ~2013
291792771115835855422311 ~2013
Home
4.724.182 digits
e-mail
25-04-13