Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
241601232834832024656711 ~2012
2416022905314496137431912 ~2013
241611898314832237966311 ~2012
2416306926114497841556712 ~2013
2416316643714497899862312 ~2013
241633454994832669099911 ~2012
241654018314833080366311 ~2012
241669373514833387470311 ~2012
241676198034833523960711 ~2012
241686703914833734078311 ~2012
2417088453714502530722312 ~2013
241716206994834324139911 ~2012
241728713634834574272711 ~2012
241728949194834578983911 ~2012
241730550594834611011911 ~2012
241755297234835105944711 ~2012
241759790394835195807911 ~2012
241763284194835265683911 ~2012
241766963394835339267911 ~2012
2417750772114506504632712 ~2013
241776494514835529890311 ~2012
241782651594835653031911 ~2012
241805400114836108002311 ~2012
2418090679714508544078312 ~2013
241822518114836450362311 ~2012
Exponent Prime Factor Dig. Year
2418267001119346136008912 ~2014
2418293037714509758226312 ~2013
241839910434836798208711 ~2012
241865022114837300442311 ~2012
241879975914837599518311 ~2012
241883991594837679831911 ~2012
241895917194837918343911 ~2012
241897980714837959614311 ~2012
2419106807314514640843912 ~2013
241924244634838484892711 ~2012
241932192234838643844711 ~2012
241972483194839449663911 ~2012
241972857714839457154311 ~2012
241985192692105...76403114 2024
241998052194839961043911 ~2012
241998412194839968243911 ~2012
242007388794840147775911 ~2012
242008515834840170316711 ~2012
2420201155314521206931912 ~2013
242021690034840433800711 ~2012
2420380346933885324856712 ~2014
2420388426114522330556712 ~2013
242061954594841239091911 ~2012
2420880211719367041693712 ~2014
242095224114841904482311 ~2012
Exponent Prime Factor Dig. Year
242122263594842445271911 ~2012
242134267194842685343911 ~2012
242134921194842698423911 ~2012
242137539234842750784711 ~2012
2421376441714528258650312 ~2013
242145509634842910192711 ~2012
242167822794843356455911 ~2012
2421731620324217316203112 ~2014
2421778518114530671108712 ~2013
242189083314843781666311 ~2012
2421943603943594984870312 ~2014
2421944454114531666724712 ~2013
2422071883119376575064912 ~2014
242216442114844328842311 ~2012
242217294594844345891911 ~2012
242223143394844462867911 ~2012
242225172114844503442311 ~2012
2422306867143601523607912 ~2014
2422412464119379299712912 ~2014
242251780794845035615911 ~2012
242259269514845185390311 ~2012
2422726638114536359828712 ~2013
2422834534114537007204712 ~2013
242286546834845730936711 ~2012
2422894477177532623267312 ~2015
Exponent Prime Factor Dig. Year
2422997533314537985199912 ~2013
242300097594846001951911 ~2012
242302978314846059566311 ~2012
242318934594846378691911 ~2012
242321508234846430164711 ~2012
2423234761924232347619112 ~2014
242324573514846491470311 ~2012
2423267419924232674199112 ~2014
242331511794846630235911 ~2012
242339682114846793642311 ~2012
242343454314846869086311 ~2012
2423524015719388192125712 ~2014
242359111914847182238311 ~2012
242391360114847827202311 ~2012
2423928385719391427085712 ~2014
242393401434847868028711 ~2012
242407578234848151564711 ~2012
242415793314848315866311 ~2012
242452329714849046594311 ~2012
242461999794849239995911 ~2012
2424769541919398156335312 ~2014
242491868034849837360711 ~2012
242517666834850353336711 ~2012
2425353837714552123026312 ~2013
2425395592719403164741712 ~2014
Home
4.828.532 digits
e-mail
25-06-01