Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3514441990128115535920912 ~2015
351454201197029084023911 ~2013
351465295317029305906311 ~2013
351472330317029446606311 ~2013
351479559717029591194311 ~2013
351495295437029905908711 ~2013
351502143837030042876711 ~2013
351514169037030283380711 ~2013
3515244535935152445359112 ~2015
351532966797030659335911 ~2013
351544602237030892044711 ~2013
3515514976128124119808912 ~2015
351557346717031146934311 ~2013
351572317317031446346311 ~2013
351598760997031975219911 ~2013
351610587117032211742311 ~2013
351614361117032287222311 ~2013
3516190426335161904263112 ~2015
351631273197032625463911 ~2013
351653964597033079291911 ~2013
351659591517033191830311 ~2013
351680015517033600310311 ~2013
351680097072510...93079914 2024
351680120637033602412711 ~2013
351702098037034041960711 ~2013
Exponent Prime Factor Dig. Year
351705719397034114387911 ~2013
3517187238735171872387112 ~2015
351719437917034388758311 ~2013
3517413204121104479224712 ~2015
351751355637035027112711 ~2013
351775490037035509800711 ~2013
351780424917035608498311 ~2013
351799143237035982864711 ~2013
3518243731721109462390312 ~2015
351835124997036702499911 ~2013
351852781197037055623911 ~2013
351854863317037097266311 ~2013
3518596713721111580282312 ~2015
351866893797037337875911 ~2013
3518871273156301940369712 ~2016
351895101717037902034311 ~2013
351914564037038291280711 ~2013
3519276743928154213951312 ~2015
351928607397038572147911 ~2013
351928674717038573494311 ~2013
351938057997038761159911 ~2013
351944732637038894652711 ~2013
351966687117039333742311 ~2013
3519800329749277204615912 ~2015
3520346224728162769797712 ~2015
Exponent Prime Factor Dig. Year
3520528567321123171403912 ~2015
352076337117041526742311 ~2013
352088739237041774784711 ~2013
352109114517042182290311 ~2013
3521111303321126667819912 ~2015
3521118672177464610786312 ~2016
352151465037043029300711 ~2013
352161251637043225032711 ~2013
3521714827721130288966312 ~2015
3522100366356353605860912 ~2016
352237293117044745862311 ~2013
352316683197046333663911 ~2013
3523524031128188192248912 ~2015
352361161197047223223911 ~2013
352369850997047397019911 ~2013
3523858206121143149236712 ~2015
3523870313321143221879912 ~2015
352392322437047846448711 ~2013
352393518117047870362311 ~2013
352394364837047887296711 ~2013
352396489197047929783911 ~2013
352398772197047975443911 ~2013
352415963037048319260711 ~2013
3524206650735242066507112 ~2015
352459319397049186387911 ~2013
Exponent Prime Factor Dig. Year
352467266997049345339911 ~2013
352490090517049801810311 ~2013
3525016133321150096799912 ~2015
352507010397050140207911 ~2013
352507244037050144880711 ~2013
352508969037050179380711 ~2013
352518178797050363575911 ~2013
352520285517050405710311 ~2013
352531253997050625079911 ~2013
352539855237050797104711 ~2013
3525589254156409428065712 ~2016
352566963117051339262311 ~2013
3525915013128207320104912 ~2015
352605262437052105248711 ~2013
352605909237052118184711 ~2013
352608592197052171843911 ~2013
3526461190128211689520912 ~2015
3526638073321159828439912 ~2015
352665973917053319478311 ~2013
352678357197053567143911 ~2013
352701749037054034980711 ~2013
3527089633721162537802312 ~2015
352735076517054701530311 ~2013
352756074597055121491911 ~2013
352758864237055177284711 ~2013
Home
4.724.182 digits
e-mail
25-04-13