Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3500951155321005706931912 ~2015
350096642517001932850311 ~2013
350159573637003191472711 ~2013
350160440397003208807911 ~2013
3502253238121013519428712 ~2015
350234035437004680708711 ~2013
350241399717004827994311 ~2013
350242822317004856446311 ~2013
350263235517005264710311 ~2013
350268603717005372074311 ~2013
3502909474121017456844712 ~2015
350296166037005923320711 ~2013
3503090839128024726712912 ~2015
3503114842128024918736912 ~2015
350328641997006572839911 ~2013
350341833117006836662311 ~2013
3503658157721021948946312 ~2015
350366533317007330666311 ~2013
3503707973321022247839912 ~2015
3504011226763072202080712 ~2016
3504019887163072357967912 ~2016
350413511397008270227911 ~2013
3504295891728034367133712 ~2015
3504468924121026813544712 ~2015
350479843437009596868711 ~2013
Exponent Prime Factor Dig. Year
350541756717010835134311 ~2013
350546401197010928023911 ~2013
350617144317012342886311 ~2013
350624340597012486811911 ~2013
350641978917012839578311 ~2013
3506468323721038809942312 ~2015
350661745797013234915911 ~2013
350668231917013364638311 ~2013
3506842565928054740527312 ~2015
3507140849928057126799312 ~2015
3507189732121043138392712 ~2015
350738009997014760199911 ~2013
350744996997014899939911 ~2013
3507517108335075171083112 ~2015
3507639377349106951282312 ~2015
3507705035321046230211912 ~2015
350778900597015578011911 ~2013
350809606437016192128711 ~2013
350823055797016461115911 ~2013
3508333111321049998667912 ~2015
3508447621321050685727912 ~2015
3508461937128067695496912 ~2015
350847344037016946880711 ~2013
350871856437017437128711 ~2013
350873104917017462098311 ~2013
Exponent Prime Factor Dig. Year
350878424037017568480711 ~2013
350880250797017605015911 ~2013
3508864129721053184778312 ~2015
350900522517018010450311 ~2013
350920800717018416014311 ~2013
350921514837018430296711 ~2013
350928861837018577236711 ~2013
350943397797018867955911 ~2013
350946130917018922618311 ~2013
350968585917019371718311 ~2013
350997213117019944262311 ~2013
3510043303721060259822312 ~2015
351022407597020448151911 ~2013
3510307129128082457032912 ~2015
351049282917020985658311 ~2013
351071666037021433320711 ~2013
351086233917021724678311 ~2013
3510882544728087060357712 ~2015
351090601917021812038311 ~2013
351093959637021879192711 ~2013
351099443517021988870311 ~2013
3511185262121067111572712 ~2015
351119834637022396692711 ~2013
351132431299410...58572114 2025
3511594819321069568915912 ~2015
Exponent Prime Factor Dig. Year
351170269797023405395911 ~2013
351175064997023501299911 ~2013
351180965997023619319911 ~2013
3511845955321071075731912 ~2015
351200476197024009523911 ~2013
3512051220121072307320712 ~2015
3512145463321072872779912 ~2015
351218384397024367687911 ~2013
351227533437024550668711 ~2013
351233088597024661771911 ~2013
351235507197024710143911 ~2013
351242400717024848014311 ~2013
351254076237025081524711 ~2013
351272355717025447114311 ~2013
3512748283935127482839112 ~2015
3513184619963237323158312 ~2016
3513322138121079932828712 ~2015
351339266517026785330311 ~2013
351373473837027469476711 ~2013
351400667637028013352711 ~2013
351401572317028031446311 ~2013
3514291093935142910939112 ~2015
351437515797028750315911 ~2013
3514418478756230695659312 ~2016
351443652117028873042311 ~2013
Home
4.724.182 digits
e-mail
25-04-13