Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
291211487995824229759911 ~2013
291220224115824404482311 ~2013
2912215548117473293288712 ~2014
291230923915824618478311 ~2013
291245032795824900655911 ~2013
291256024795825120495911 ~2013
291262386715825247734311 ~2013
291276796012819...85376914 2025
291291659515825833190311 ~2013
291296607235825932144711 ~2013
291310710715826214214311 ~2013
291318845995826376919911 ~2013
291339221995826784439911 ~2013
291378044995827560899911 ~2013
291390116515827802330311 ~2013
291392525995827850519911 ~2013
291392987035827859740711 ~2013
291400959235828019184711 ~2013
291416194435828323888711 ~2013
291428931595828578631911 ~2013
291450544435829010888711 ~2013
2914527312117487163872712 ~2014
2914536532117487219192712 ~2014
291454678435829093568711 ~2013
291455481115829109622311 ~2013
Exponent Prime Factor Dig. Year
291463679035829273580711 ~2013
291473817235829476344711 ~2013
291493810915829876218311 ~2013
291498550195829971003911 ~2013
291510673315830213466311 ~2013
291523008115830460162311 ~2013
291533662795830673255911 ~2013
291538298995830765979911 ~2013
2915475493123323803944912 ~2014
2915816409717494898458312 ~2014
291596115835831922316711 ~2013
291604680595832093611911 ~2013
2916278706117497672236712 ~2014
291636481195832729623911 ~2013
2916673138117500038828712 ~2014
2916748777317500492663912 ~2014
291692005195833840103911 ~2013
291703526395834070527911 ~2013
291711845995834236919911 ~2013
291712189315834243786311 ~2013
291727613395834552267911 ~2013
291730352635834607052711 ~2013
2917439685746679034971312 ~2015
291751465435835029308711 ~2013
291757987195835159743911 ~2013
Exponent Prime Factor Dig. Year
291781010635835620212711 ~2013
291792771115835855422311 ~2013
291802828195836056563911 ~2013
291822457915836449158311 ~2013
291830094835836601896711 ~2013
291834309115836686182311 ~2013
2918443690117510662140712 ~2014
291859893235837197864711 ~2013
291864589195837291783911 ~2013
291865286395837305727911 ~2013
291871964635837439292711 ~2013
291879762835837595256711 ~2013
2918907292329189072923112 ~2014
291908727235838174544711 ~2013
291944488195838889763911 ~2013
291955132795839102655911 ~2013
2920062528117520375168712 ~2014
292038786595840775731911 ~2013
292046040835840920816711 ~2013
2920477417364250503180712 ~2015
292052090035841041800711 ~2013
292078266715841565334311 ~2013
292089048595841780971911 ~2013
292099377235841987544711 ~2013
292113314513996...42496914 2023
Exponent Prime Factor Dig. Year
292117377835842347556711 ~2013
2921358739317528152435912 ~2014
2921536714329215367143112 ~2014
292186040995843720819911 ~2013
292247241835844944836711 ~2013
292299115195845982303911 ~2013
2923155721317538934327912 ~2014
2923253273923386026191312 ~2014
292327881595846557631911 ~2013
292330645195846612903911 ~2013
292345880395846917607911 ~2013
292350354115847007082311 ~2013
292380979435847619588711 ~2013
292402616395848052327911 ~2013
292413591835848271836711 ~2013
292427742715848554854311 ~2013
292431871195848637423911 ~2013
292442578315848851566311 ~2013
292452369595849047391911 ~2013
292482606835849652136711 ~2013
2924898662940948581280712 ~2015
2925082740146801323841712 ~2015
2925127817923401022543312 ~2014
292527514315850550286311 ~2013
292531017115850620342311 ~2013
Home
4.828.532 digits
e-mail
25-06-01