Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
419187409318383748186311 ~2014
419194660798383893215911 ~2014
4191951223133535609784912 ~2015
4192008319367072133108912 ~2016
4192341093725154046562312 ~2015
419262359518385247190311 ~2014
419277685798385553715911 ~2014
419287821232121...75423914 2023
4192931824125157590944712 ~2015
419306075038386121500711 ~2014
4193247580341932475803112 ~2016
419342971318386859426311 ~2014
419344539718386890794311 ~2014
419347565518386951310311 ~2014
419354175718387083514311 ~2014
419380279198387605583911 ~2014
419399080798387981615911 ~2014
419400398638388007972711 ~2014
419405675638388113512711 ~2014
4194077042933552616343312 ~2015
419410484038388209680711 ~2014
419442905398388858107911 ~2014
419442958438388859168711 ~2014
419463591118389271822311 ~2014
419494293838389885876711 ~2014
Exponent Prime Factor Dig. Year
419496002638389920052711 ~2014
419501561518390031230311 ~2014
419525533198390510663911 ~2014
4195275173933562201391312 ~2015
4195399623725172397742312 ~2015
4195504653725173027922312 ~2015
4195570396133564563168912 ~2015
419581390318391627806311 ~2014
419614446118392288922311 ~2014
419620611118392412222311 ~2014
419630433718392608674311 ~2014
419640710038392814200711 ~2014
419675583838393511676711 ~2014
419676220438393524408711 ~2014
419694750838393895016711 ~2014
4197008917367152142676912 ~2016
419728942918394578858311 ~2014
419745664438394913288711 ~2014
4197689524341976895243112 ~2016
4198150167725188901006312 ~2015
419819734438396394688711 ~2014
419838631438396772628711 ~2014
419839606918396792138311 ~2014
419858525998397170519911 ~2014
419858603038397172060711 ~2014
Exponent Prime Factor Dig. Year
419862561598397251231911 ~2014
419868728712863...29802314 2024
4199018704733592149637712 ~2015
419910930718398218614311 ~2014
419913769198398275383911 ~2014
419922968038398459360711 ~2014
419961441118399228822311 ~2014
4199894651325199367907912 ~2015
420012317038400246340711 ~2014
4200571198733604569589712 ~2015
420083073118401661462311 ~2014
4200924115133607392920912 ~2015
420092540518401850810311 ~2014
420110569918402211398311 ~2014
420114167638402283352711 ~2014
420118590471487...10263914 2023
420138405598402768111911 ~2014
420147109318402942186311 ~2014
420147575398402951507911 ~2014
420156211438403124228711 ~2014
420157633198403152663911 ~2014
4201801427325210808563912 ~2015
420182260318403645206311 ~2014
420192105598403842111911 ~2014
420202547518404050950311 ~2014
Exponent Prime Factor Dig. Year
420204005638404080112711 ~2014
420207920398404158407911 ~2014
420247614238404952284711 ~2014
420247727638404954552711 ~2014
4202509831725215058990312 ~2015
420311564638406231292711 ~2014
420328878598406577571911 ~2014
420346218838406924376711 ~2014
4203630685942036306859112 ~2016
420391833118407836662311 ~2014
420400920718408018414311 ~2014
420408671038408173420711 ~2014
420411730198408234603911 ~2014
4204388248125226329488712 ~2015
420527817598410556351911 ~2014
420563801398411276027911 ~2014
4205755417325234532503912 ~2015
4205786367142057863671112 ~2016
420581211238411624224711 ~2014
420607194238412143884711 ~2014
420611711998412234239911 ~2014
420620518918412410378311 ~2014
420624436918412488738311 ~2014
4206256164767300098635312 ~2016
420632990398412659807911 ~2014
Home
4.724.182 digits
e-mail
25-04-13