Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
293419915435868398308711 ~2013
293430010435868600208711 ~2013
293480351635869607032711 ~2013
2934835480329348354803112 ~2014
2934880345317609282071912 ~2014
2934888538123479108304912 ~2014
293501597035870031940711 ~2013
2935091497717610548986312 ~2014
293510874835870217496711 ~2013
2935139964729351399647112 ~2014
293517051715870341034311 ~2013
293535716515870714330311 ~2013
293579387515871587750311 ~2013
293585333395871706667911 ~2013
293598800515871976010311 ~2013
293639778715872795574311 ~2013
293662216915873244338311 ~2013
293692807795873856155911 ~2013
2936989614117621937684712 ~2014
293736128995874722579911 ~2013
2937383565717624301394312 ~2014
293749100635874982012711 ~2013
2937552847347000845556912 ~2015
293757486595875149731911 ~2013
293759698795875193975911 ~2013
Exponent Prime Factor Dig. Year
2937843783129378437831112 ~2014
2937972003129379720031112 ~2014
293803313395876066267911 ~2013
293826029395876520587911 ~2013
293836845595876736911911 ~2013
2938402696347014443140912 ~2015
2938416373723507330989712 ~2014
293857055515877141110311 ~2013
2938625107723509000861712 ~2014
2938830079123510640632912 ~2014
293883259195877665183911 ~2013
2939030575317634183451912 ~2014
2939074533717634447202312 ~2014
293917581115878351622311 ~2013
293918438395878368767911 ~2013
293923699435878473988711 ~2013
2939600203929396002039112 ~2014
293966907235879338144711 ~2013
293984998435879699968711 ~2013
2939959793317639758759912 ~2014
293997008995879940179911 ~2013
294005922235880118444711 ~2013
294012341395880246827911 ~2013
294017411635880348232711 ~2013
294032425795880648515911 ~2013
Exponent Prime Factor Dig. Year
294035795395880715907911 ~2013
294046102195880922043911 ~2013
2940521646117643129876712 ~2014
294060222595881204451911 ~2013
294065909035881318180711 ~2013
294070297795881405955911 ~2013
294087963115881759262311 ~2013
294099142915881982858311 ~2013
2941429314117648575884712 ~2014
294152491195883049823911 ~2013
294166819195883336383911 ~2013
294187756195883755123911 ~2013
294189513235883790264711 ~2013
294195618235883912364711 ~2013
2942431718923539453751312 ~2014
294247226995884944539911 ~2013
2942637744147082203905712 ~2015
294267103315885342066311 ~2013
294277921435885558428711 ~2013
294298737835885974756711 ~2013
294302064235886041284711 ~2013
294302458435886049168711 ~2013
294306958315886139166311 ~2013
2943100921929431009219112 ~2014
294340800595886816011911 ~2013
Exponent Prime Factor Dig. Year
294342748195886854963911 ~2013
2943436758752981861656712 ~2015
294365163595887303271911 ~2013
294375660835887513216711 ~2013
2944118029717664708178312 ~2014
2944252115923554016927312 ~2014
294430135315888602706311 ~2013
294447145435888942908711 ~2013
294494307715889886154311 ~2013
294514782715890295654311 ~2013
294524022115890480442311 ~2013
294553973515891079470311 ~2013
2945754379929457543799112 ~2014
294583939315891678786311 ~2013
294586058995891721179911 ~2013
294593270395891865407911 ~2013
294600068995892001379911 ~2013
294619770595892395411911 ~2013
294621469195892429383911 ~2013
294640182715892803654311 ~2013
294652040395893040807911 ~2013
294657211435893144228711 ~2013
294662919835893258396711 ~2013
2946673010923573384087312 ~2014
294676270195893525403911 ~2013
Home
4.828.532 digits
e-mail
25-06-01