Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4347455026134779640208912 ~2016
434747380198694947603911 ~2014
434772628318695452566311 ~2014
4347761777934782094223312 ~2016
4347773363934782186911312 ~2016
434784455398695689107911 ~2014
4347876632934783013063312 ~2016
434830147198696602943911 ~2014
434867790238697355804711 ~2014
4348728808734789830469712 ~2016
434876014918697520298311 ~2014
4348881492126093288952712 ~2015
434916391438698327828711 ~2014
434922192238698443844711 ~2014
434952964318699059286311 ~2014
4349617480134796939840912 ~2016
435034682518700693650311 ~2014
4350437282960906121960712 ~2016
4350717085726104302514312 ~2015
435086840998701736819911 ~2014
435092411998701848239911 ~2014
4351075702734808605621712 ~2016
435125952118702519042311 ~2014
435166577038703331540711 ~2014
435177206518703544130311 ~2014
Exponent Prime Factor Dig. Year
4352453892126114723352712 ~2015
4352574093143525740931112 ~2016
435310785838706215716711 ~2014
435322045198706440903911 ~2014
435322500718706450014311 ~2014
435327324238706546484711 ~2014
435331476598706629531911 ~2014
4353553114126121318684712 ~2015
435372790918707455818311 ~2014
4353759579726122557478312 ~2015
435380343838707606876711 ~2014
435411811798708236235911 ~2014
435427272718708545454311 ~2014
435432742798708654855911 ~2014
435466042918709320858311 ~2014
435479140798709582815911 ~2014
4354996007326129976043912 ~2015
4355098079360971373110312 ~2016
4355102125134840817000912 ~2016
435520195198710403903911 ~2014
435554139118711082782311 ~2014
435579548998711590979911 ~2014
435605361118712107222311 ~2014
435606605518712132110311 ~2014
435625686838712513736711 ~2014
Exponent Prime Factor Dig. Year
4356321796778413792340712 ~2016
4356356417934850851343312 ~2016
435659366518713187330311 ~2014
4356646423326139878539912 ~2015
4357150530126142903180712 ~2015
435751041598715020831911 ~2014
435752053918715041078311 ~2014
435759146398715182927911 ~2014
4358067529726148405178312 ~2015
435821057398716421147911 ~2014
4358392209726150353258312 ~2015
4358717557326152305343912 ~2015
435883466638717669332711 ~2014
435891929038717838580711 ~2014
435895582198717911643911 ~2014
435897878638717957572711 ~2014
4359116476343591164763112 ~2016
4359213398934873707191312 ~2016
435941782699512...98295914 2025
435953308198719066163911 ~2014
4359570361726157422170312 ~2015
435980923198719618463911 ~2014
4359915302961038814240712 ~2016
4360002440934880019527312 ~2016
436002240238720044804711 ~2014
Exponent Prime Factor Dig. Year
436007832838720156656711 ~2014
436028065438720561308711 ~2014
436055157118721103142311 ~2014
436065956112904...67692714 2023
436066144798721322895911 ~2014
436090211998721804239911 ~2014
436135437238722708744711 ~2014
4361757166126170542996712 ~2015
436186678198723733563911 ~2014
436190545438723810908711 ~2014
436238256598724765131911 ~2014
4362501448343625014483112 ~2016
436261164838725223296711 ~2014
436268003638725360072711 ~2014
4362758620369804137924912 ~2016
436339056718726781134311 ~2014
436361124238727222484711 ~2014
436449243718728984874311 ~2014
436455920998729118419911 ~2014
4364595005361104330074312 ~2016
436472946118729458922311 ~2014
436513060318730261206311 ~2014
4365184692126191108152712 ~2015
436521255718730425114311 ~2014
436546147918730922958311 ~2014
Home
4.724.182 digits
e-mail
25-04-13