Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
470181540839403630816711 ~2014
470182194599403643891911 ~2014
470184670919403693418311 ~2014
470214506399404290127911 ~2014
4702598867365836384142312 ~2016
4702833669728217002018312 ~2016
470314639439406292788711 ~2014
470321366999406427339911 ~2014
470363924519407278490311 ~2014
470371753199407435063911 ~2014
470378003399407560067911 ~2014
470389253632935...42651314 2024
470409955919408199118311 ~2014
4704174858175266797729712 ~2017
4704196603947041966039112 ~2016
470457191639409143832711 ~2014
470462122439409242448711 ~2014
470527268639410545372711 ~2014
470528651999410573039911 ~2014
4705477921728232867530312 ~2016
4705528323728233169942312 ~2016
470553056399411061127911 ~2014
470578403639411568072711 ~2014
4706432013775302912219312 ~2017
470665190999413303819911 ~2014
Exponent Prime Factor Dig. Year
470679142919413582858311 ~2014
4706895918128241375508712 ~2016
470782760519415655210311 ~2014
470790253199415805063911 ~2014
4708054608747080546087112 ~2016
470811924239416238484711 ~2014
4708229280128249375680712 ~2016
470841715319416834306311 ~2014
470857026599417140531911 ~2014
4708643904747086439047112 ~2016
470874639119417492782311 ~2014
470901569999418031399911 ~2014
470920093199418401863911 ~2014
4709267347328255604083912 ~2016
470953484039419069680711 ~2014
4709547610737676380885712 ~2016
4709655455328257932731912 ~2016
470976914999419538299911 ~2014
470978846992373...88829714 2024
471012812039420256240711 ~2014
471017205599420344111911 ~2014
471069849239421396984711 ~2014
471081735599421634711911 ~2014
471119087519422381750311 ~2014
471143235614513...97143914 2024
Exponent Prime Factor Dig. Year
471158251439423165028711 ~2014
471163780199423275603911 ~2014
471214237319424284746311 ~2014
4712431459728274588758312 ~2016
471266168639425323372711 ~2014
471300591119426011822311 ~2014
471378470639427569412711 ~2014
471382764291498...90442314 2023
471383784599427675691911 ~2014
471386381999427727639911 ~2014
471406311719428126234311 ~2014
471436438439428728768711 ~2014
4714402713147144027131112 ~2016
4714505439147145054391112 ~2016
471451896719429037934311 ~2014
471454172399429083447911 ~2014
471476643599429532871911 ~2014
471507530999430150619911 ~2014
471539311799430786235911 ~2014
471560069399431201387911 ~2014
471564934319431298686311 ~2014
471575136719431502734311 ~2014
471591153239431823064711 ~2014
4715942901775455086427312 ~2017
4716124549766025743695912 ~2016
Exponent Prime Factor Dig. Year
471618617399432372347911 ~2014
471636728519432734570311 ~2014
471681477839433629556711 ~2014
471684044039433680880711 ~2014
471686181119433723622311 ~2014
471693827639433876552711 ~2014
471710301839434206036711 ~2014
4717370815728304224894312 ~2016
4717680622128306083732712 ~2016
471788769119435775382311 ~2014
471842117999436842359911 ~2014
471846177239436923544711 ~2014
4718739271947187392719112 ~2016
471874024919437480498311 ~2014
471876270839437525416711 ~2014
4719449263737755594109712 ~2016
471958847519439176950311 ~2014
4719738749937757909999312 ~2016
472017209039440344180711 ~2014
472019614799440392295911 ~2014
4720320019328321920115912 ~2016
4720351206775525619307312 ~2017
472040382239440807644711 ~2014
472074258239441485164711 ~2014
4721151793728326910762312 ~2016
Home
4.724.182 digits
e-mail
25-04-13