Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
324899184596497983691911 ~2013
3249001498725992011989712 ~2015
324919174019481...97611914 2023
3249330531132493305311112 ~2015
324953204996499064099911 ~2013
3249539514751992632235312 ~2015
324956823716499136474311 ~2013
3250003959719500023758312 ~2014
325021518236500430364711 ~2013
325021534796500430695911 ~2013
3250458341345506416778312 ~2015
325056506036501130120711 ~2013
325067799236501355984711 ~2013
325077306836501546136711 ~2013
325078412636501568252711 ~2013
325083437996501668759911 ~2013
325109794196502195883911 ~2013
3251119375126008955000912 ~2015
325127737196502554743911 ~2013
325130963036502619260711 ~2013
325143766196502875323911 ~2013
325164857516503297150311 ~2013
325208099036504161980711 ~2013
325209297236504185944711 ~2013
325235931836504718636711 ~2013
Exponent Prime Factor Dig. Year
325260288236505205764711 ~2013
325275921596505518431911 ~2013
325292238716505844774311 ~2013
3252926904119517561424712 ~2014
3253033627378072807055312 ~2016
3253040497126024323976912 ~2015
325307481116506149622311 ~2013
325325404796506508095911 ~2013
325330993316506619866311 ~2013
325334506571561...31536114 2023
325335261836506705236711 ~2013
3253478537319520871223912 ~2014
325348058516506961170311 ~2013
3253628925719521773554312 ~2014
325383875036507677500711 ~2013
325413103316508262066311 ~2013
325440691436508813828711 ~2013
325445374796508907495911 ~2013
325445428796508908575911 ~2013
325445544596508910891911 ~2013
325456900916509138018311 ~2013
3254638209752074211355312 ~2015
3254752089719528512538312 ~2014
325482492716509649854311 ~2013
325489676636509793532711 ~2013
Exponent Prime Factor Dig. Year
3255214657319531287943912 ~2014
3255733693745580271711912 ~2015
3255845881726046767053712 ~2015
325629462716512589254311 ~2013
325645783796512915675911 ~2013
3256531351319539188107912 ~2014
325723738196514474763911 ~2013
325723932116514478642311 ~2013
325726009196514520183911 ~2013
325739524196514790483911 ~2013
325743860636514877212711 ~2013
325745240636514904812711 ~2013
325760285036515205700711 ~2013
325768431716515368634311 ~2013
3257882380119547294280712 ~2014
3258091896119548551376712 ~2014
3258200824726065606597712 ~2015
325845353636516907072711 ~2013
325855750796517115015911 ~2013
325856668196517133363911 ~2013
325856780036517135600711 ~2013
3258671481719552028890312 ~2014
325873201316517464026311 ~2013
3258821460119552928760712 ~2014
3259024380119554146280712 ~2014
Exponent Prime Factor Dig. Year
3259041383319554248299912 ~2014
3259089508726072716069712 ~2015
325940586716518811734311 ~2013
325958182916519163658311 ~2013
325958497196519169943911 ~2013
3259635040119557810240712 ~2014
3259635735719557814414312 ~2014
325966749836519334996711 ~2013
325990869596519817391911 ~2013
326009569196520191383911 ~2013
326033936396520678727911 ~2013
3260467858119562807148712 ~2014
326048716196520974323911 ~2013
326049098996520981979911 ~2013
326067485396521349707911 ~2013
326074985036521499700711 ~2013
326077789436521555788711 ~2013
326094755516521895110311 ~2013
326112538196522250763911 ~2013
326133289916522665798311 ~2013
3261353587352181657396912 ~2015
3261407472119568444832712 ~2014
3261407824119568446944712 ~2014
3261580108726092640869712 ~2015
3261590398726092723189712 ~2015
Home
4.828.532 digits
e-mail
25-06-01