Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5077757780310155515560712 ~2015
5078028949110156057898312 ~2015
5078497475910156994951912 ~2015
5078689483110157378966312 ~2015
5078755742310157511484712 ~2015
5079243836310158487672712 ~2015
5079292195110158584390312 ~2015
5079318293910158636587912 ~2015
5079389657910158779315912 ~2015
5080097365110160194730312 ~2015
5080689403110161378806312 ~2015
5081031779940648254239312 ~2016
5081712124140653696992912 ~2016
5081780647110163561294312 ~2015
5081910127110163820254312 ~2015
5082714026310165428052712 ~2015
5083045760310166091520712 ~2015
5083099402140664795216912 ~2016
5083510874310167021748712 ~2015
5083894394310167788788712 ~2015
5083966237110167932474312 ~2015
5084004047910168008095912 ~2015
5084856782310169713564712 ~2015
5084887760310169775520712 ~2015
5084888450310169776900712 ~2015
Exponent Prime Factor Dig. Year
5085262519140682100152912 ~2016
5085430961330512585767912 ~2016
5085462046350854620463112 ~2016
5085481166940683849335312 ~2016
5085765323330514591939912 ~2016
5085829430310171658860712 ~2015
5085888566310171777132712 ~2015
5086006195110172012390312 ~2015
5087170805910174341611912 ~2015
5087656871910175313743912 ~2015
5087712979110175425958312 ~2015
5088344351910176688703912 ~2015
5088368557110176737114312 ~2015
5088389431110176778862312 ~2015
5088680966310177361932712 ~2015
5088884207910177768415912 ~2015
5088890041110177780082312 ~2015
5089862533110179725066312 ~2015
5090573587110181147174312 ~2015
5091053068740728424549712 ~2016
5091216523110182433046312 ~2015
5091333262130547999572712 ~2016
5091343087330548058523912 ~2016
5091476588310182953176712 ~2015
5091677075910183354151912 ~2015
Exponent Prime Factor Dig. Year
5091733717140733869736912 ~2016
5091750303730550501822312 ~2016
5091944546940735556375312 ~2016
5092756406310185512812712 ~2015
5093617370310187234740712 ~2015
5094121849110188243698312 ~2015
5094136591110188273182312 ~2015
5094444667110188889334312 ~2015
5094492278310188984556712 ~2015
5094689275110189378550312 ~2015
5094813742130568882452712 ~2016
5095584939730573509638312 ~2016
5095682327910191364655912 ~2015
5095944933730575669602312 ~2016
5095990777740767926221712 ~2016
509644175871349...77037715 2025
5097038329110194076658312 ~2015
5097220826310194441652712 ~2015
5097226957110194453914312 ~2015
5097335021330584010127912 ~2016
5097881459910195762919912 ~2015
509794655573456...64764714 2023
5098151318310196302636712 ~2015
5098993891110197987782312 ~2015
5099394965910198789931912 ~2015
Exponent Prime Factor Dig. Year
5099810339910199620679912 ~2015
5099816948310199633896712 ~2015
5099873477910199746955912 ~2015
5100519545910201039091912 ~2015
5100625753110201251506312 ~2015
5100978205110201956410312 ~2015
5101031567910202063135912 ~2015
5101181300310202362600712 ~2015
5101312952310202625904712 ~2015
5101405613940811244911312 ~2016
5101515779910203031559912 ~2015
5101894010310203788020712 ~2015
5101916065110203832130312 ~2015
5102372402310204744804712 ~2015
5102632334310205264668712 ~2015
5102897404140823179232912 ~2016
5102898116310205796232712 ~2015
5103073357110206146714312 ~2015
510317669271469...87497714 2023
5103814196310207628392712 ~2015
5104195196310208390392712 ~2015
5104669585110209339170312 ~2015
5104791365910209582731912 ~2015
5105393831910210787663912 ~2015
5105478065910210956131912 ~2015
Home
4.724.182 digits
e-mail
25-04-13