Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
251415724195028314483911 ~2012
2514458976175433769283112 ~2015
2514592169920116737359312 ~2014
251468619235029372384711 ~2012
251484027115029680542311 ~2012
251497517995029950359911 ~2012
251499264235029985284711 ~2012
251503409035030068180711 ~2012
251531872435030637448711 ~2012
2515330648115091983888712 ~2013
2515652519315093915115912 ~2013
251566050115031321002311 ~2012
251568118435031362368711 ~2012
251581131595031622631911 ~2012
2515827817715094966906312 ~2013
251591368195031827363911 ~2012
251592347395031846947911 ~2012
251596464115031929282311 ~2012
251597601233386...12555914 2023
251600532835032010656711 ~2012
2516051632720128413061712 ~2014
251652176635033043532711 ~2012
251674769635033495392711 ~2012
251676119395033522387911 ~2012
251681782195033635643911 ~2012
Exponent Prime Factor Dig. Year
2516833504120134668032912 ~2014
2516891834980540538716912 ~2015
2517059266960409422405712 ~2015
251729783395034595667911 ~2012
251732220835034644416711 ~2012
251734424035034688480711 ~2012
251737151395034743027911 ~2012
251742890515034857810311 ~2012
251758493395035169867911 ~2012
251776114195035522283911 ~2012
251793973195035879463911 ~2012
2517946441315107678647912 ~2013
251824473595036489471911 ~2012
2518306603715109839622312 ~2013
2518323047315109938283912 ~2013
251837349233087...01559914 2023
251839293835036785876711 ~2012
2518394397715110366386312 ~2013
251888855635037777112711 ~2012
2518978636120151829088912 ~2014
251898106195037962123911 ~2012
251898521515037970430311 ~2012
2519010907120152087256912 ~2014
251902844395038056887911 ~2012
251907022795038140455911 ~2012
Exponent Prime Factor Dig. Year
251915667595038313351911 ~2012
251961758635039235172711 ~2012
2519727060740315632971312 ~2014
251978498515039569970311 ~2012
2519829243715118975462312 ~2013
251990497195039809943911 ~2012
251994687115039893742311 ~2012
2519982204725199822047112 ~2014
252004959235040099184711 ~2012
252005893435040117868711 ~2012
252048953995040979079911 ~2012
252060548515041210970311 ~2012
252066474235041329484711 ~2012
252070369315041407386311 ~2012
252074957635041499152711 ~2012
252075705235041514104711 ~2012
2520764363315124586179912 ~2013
252094267195041885343911 ~2012
2521034380115126206280712 ~2013
2521165244975634957347112 ~2015
252121211995042424239911 ~2012
252122286235042445724711 ~2012
252125132515042502650311 ~2012
252125700595042514011911 ~2012
2521322520115127935120712 ~2013
Exponent Prime Factor Dig. Year
252132711595042654231911 ~2012
2521330309120170642472912 ~2014
252138691435042773828711 ~2012
252155802373504...52943114 2023
2521580189315129481135912 ~2013
252159119995043182399911 ~2012
252160977235043219544711 ~2012
252175191115043503822311 ~2012
252205616035044112320711 ~2012
252210230995044204619911 ~2012
252214285915044285718311 ~2012
252218773915044375478311 ~2012
2522188528175665655843112 ~2015
2522352308920178818471312 ~2014
2522458147925224581479112 ~2014
252246446395044928927911 ~2012
252246632515044932650311 ~2012
2522515080760540361936912 ~2015
252257399995045147999911 ~2012
252257579515045151590311 ~2012
252260404195045208083911 ~2012
252270150971205...21636714 2023
252281961835045639236711 ~2012
2522827063315136962379912 ~2013
2523069437315138416623912 ~2013
Home
4.933.056 digits
e-mail
25-07-20