Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5130932264310261864528712 ~2015
5131036850310262073700712 ~2015
5131047031330786282187912 ~2016
5131766048310263532096712 ~2015
5132532665910265065331912 ~2015
5132677519110265355038312 ~2015
5132717117330796302703912 ~2016
5134445083110268890166312 ~2015
5134611635910269223271912 ~2015
5134621591110269243182312 ~2015
5135244703110270489406312 ~2015
5135324395951353243959112 ~2016
5136292904310272585808712 ~2015
5136691469910273382939912 ~2015
5136744764310273489528712 ~2015
5136822500971915515012712 ~2017
5136851509110273703018312 ~2015
5137246933110274493866312 ~2015
5137272802741098182421712 ~2016
5137404565951374045659112 ~2016
5137516255110275032510312 ~2015
5137753804141102030432912 ~2016
513781157414716...25023914 2023
5137864871910275729743912 ~2015
5137972157941103777263312 ~2016
Exponent Prime Factor Dig. Year
5138351471910276702943912 ~2015
5138673733110277347466312 ~2015
5138755343910277510687912 ~2015
5138857778310277715556712 ~2015
5138862443910277724887912 ~2015
5139269168310278538336712 ~2015
5139272671110278545342312 ~2015
5139414248310278828496712 ~2015
5139445121910278890243912 ~2015
5139681936130838091616712 ~2016
5139725815110279451630312 ~2015
5139925709910279851419912 ~2015
5140232705910280465411912 ~2015
5140637582941125100663312 ~2016
5140919633910281839267912 ~2015
5141025326310282050652712 ~2015
5141088953910282177907912 ~2015
5141157023910282314047912 ~2015
5141184746310282369492712 ~2015
5141186846310282373692712 ~2015
5141395205910282790411912 ~2015
5141707124310283414248712 ~2015
5141864887110283729774312 ~2015
5141936413110283872826312 ~2015
5142107282310284214564712 ~2015
Exponent Prime Factor Dig. Year
5142240444751422404447112 ~2016
5142311317330853867903912 ~2016
5142611882310285223764712 ~2015
5142650507910285301015912 ~2015
5142699074310285398148712 ~2015
5142796790971999155072712 ~2017
5142959840310285919680712 ~2015
5143622606310287245212712 ~2015
5143781042310287562084712 ~2015
5144311187330865867123912 ~2016
5144432239951444322399112 ~2016
5144481119910288962239912 ~2015
5144783849910289567699912 ~2015
5144982403110289964806312 ~2015
5145051347910290102695912 ~2015
5145132481110290264962312 ~2015
5145198977910290397955912 ~2015
5145293125110290586250312 ~2015
5145656105910291312211912 ~2015
5145829442941166635543312 ~2016
5146460712130878764272712 ~2016
5147284907910294569815912 ~2015
5147381819910294763639912 ~2015
5147579873910295159747912 ~2015
5148178085910296356171912 ~2015
Exponent Prime Factor Dig. Year
5148473627330890841763912 ~2016
5148571991910297143983912 ~2015
5148677507910297355015912 ~2015
5148757759772082608635912 ~2017
5148859163910297718327912 ~2015
514924907579886...25344114 2023
5149261769910298523539912 ~2015
5149340807910298681615912 ~2015
5149503345151495033451112 ~2016
5150204233110300408466312 ~2015
5150208313110300416626312 ~2015
5150214467910300428935912 ~2015
5150253037951502530379112 ~2016
515036894633430...18235914 2023
5150417935110300835870312 ~2015
5150790398310301580796712 ~2015
5151198305910302396611912 ~2015
5151272813910302545627912 ~2015
5151280180741210241445712 ~2016
5151437804310302875608712 ~2015
5152699769910305399539912 ~2015
5153200039110306400078312 ~2015
5153500675110307001350312 ~2015
5153502516130921015096712 ~2016
5153536040310307072080712 ~2015
Home
4.724.182 digits
e-mail
25-04-13