Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5367794528310735589056712 ~2015
5368111099110736222198312 ~2015
5368268779110736537558312 ~2015
5368610516310737221032712 ~2015
5369241553110738483106312 ~2015
5369585575110739171150312 ~2015
5369684923110739369846312 ~2015
536997868571922...69480714 2023
5370837809332225026855912 ~2016
5371123953732226743722312 ~2016
5371273869732227643218312 ~2016
5371479217110742958434312 ~2015
5371622222310743244444712 ~2015
5372328305910744656611912 ~2015
5372642396310745284792712 ~2015
5373240103110746480206312 ~2015
5373246014310746492028712 ~2015
5373436501110746873002312 ~2015
5373436753732240620522312 ~2016
5373572653332241435919912 ~2016
5374369807732246218846312 ~2016
5374443907110748887814312 ~2015
5374516493910749032987912 ~2015
5374746761910749493523912 ~2015
5374775769732248654618312 ~2016
Exponent Prime Factor Dig. Year
5375071925910750143851912 ~2015
5375343895110750687790312 ~2015
5375479081110750958162312 ~2015
5375498227110750996454312 ~2015
5375786485110751572970312 ~2015
5375976451110751952902312 ~2015
5376041767110752083534312 ~2015
5376054890310752109780712 ~2015
5376173209110752346418312 ~2015
5376174644310752349288712 ~2015
5376208976310752417952712 ~2015
5376379085910752758171912 ~2015
5376827955732260967734312 ~2016
5377155464310754310928712 ~2015
5377449463743019595709712 ~2016
5377495395732264972374312 ~2016
5377967096310755934192712 ~2015
5377981313332267887879912 ~2016
5378093443332268560659912 ~2016
5378486225332270917351912 ~2016
5378996208753789962087112 ~2017
5379940873110759881746312 ~2015
5380327403910760654807912 ~2015
5380489447110760978894312 ~2015
5380739942310761479884712 ~2015
Exponent Prime Factor Dig. Year
5380773233910761546467912 ~2015
5380803001110761606002312 ~2015
5381362481943050899855312 ~2016
5381384276310762768552712 ~2015
5381817542310763635084712 ~2015
5382366368310764732736712 ~2015
5382521216310765042432712 ~2015
5382735597732296413586312 ~2016
5382903649110765807298312 ~2015
5382942686310765885372712 ~2015
5383461193110766922386312 ~2015
5383696064310767392128712 ~2015
5383893209943071145679312 ~2016
5384426411910768852823912 ~2015
5384576467110769152934312 ~2015
5385209491110770418982312 ~2015
5385785912310771571824712 ~2015
5385795649732314773898312 ~2016
5385848635110771697270312 ~2015
5386019921910772039843912 ~2015
5386054807332316328843912 ~2016
5386454111910772908223912 ~2015
5386843291110773686582312 ~2015
5387132345910774264691912 ~2015
5387133734310774267468712 ~2015
Exponent Prime Factor Dig. Year
5387385385110774770770312 ~2015
5387612983110775225966312 ~2015
5387660828310775321656712 ~2015
5388289418310776578836712 ~2015
5388769687110777539374312 ~2015
5389111175910778222351912 ~2015
5389278013110778556026312 ~2015
5389585211910779170423912 ~2015
5389657124975455199748712 ~2017
5389739651910779479303912 ~2015
538991111512845...68772914 2024
5390092424310780184848712 ~2015
5390458004310780916008712 ~2015
5390538980310781077960712 ~2015
5390679002310781358004712 ~2015
5390833547332345001283912 ~2016
5390880008310781760016712 ~2015
5391537977910783075955912 ~2015
5391694871332350169227912 ~2016
5392323932943138591463312 ~2016
5392692289110785384578312 ~2015
5392728386310785456772712 ~2015
5393247697953932476979112 ~2017
5393375333910786750667912 ~2015
5393572373910787144747912 ~2015
Home
4.724.182 digits
e-mail
25-04-13