Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5974504033111949008066312 ~2015
5974886897911949773795912 ~2015
5975257891747802063133712 ~2017
5975491339735852948038312 ~2016
5975495270311950990540712 ~2015
5976396835335858381011912 ~2016
5977053596311954107192712 ~2015
5977425769335864554615912 ~2016
5977911979111955823958312 ~2015
5978027983111956055966312 ~2015
5978651786311957303572712 ~2015
5979028747111958057494312 ~2015
5979270260311958540520712 ~2015
5979354647335876127883912 ~2016
5979913331947839306655312 ~2017
5980046012311960092024712 ~2015
5980155235111960310470312 ~2015
5980715630311961431260712 ~2015
5981319295111962638590312 ~2015
5981349367335888096203912 ~2016
5981389224759813892247112 ~2017
5981674621111963349242312 ~2015
5981993600311963987200712 ~2015
5982381569911964763139912 ~2015
5982564337735895386026312 ~2016
Exponent Prime Factor Dig. Year
5982681541747861452333712 ~2017
5982842846311965685692712 ~2015
5983790300311967580600712 ~2015
5983815703111967631406312 ~2015
5984630273911969260547912 ~2015
5984930539111969861078312 ~2015
5985043025911970086051912 ~2015
5985091226311970182452712 ~2015
5985187681747881501453712 ~2017
5985598507111971197014312 ~2015
5986108514311972217028712 ~2015
5986215269911972430539912 ~2015
5986634077111973268154312 ~2015
5986972262311973944524712 ~2015
5987131357111974262714312 ~2015
5987315353747898522829712 ~2017
5987328864135923973184712 ~2016
5987373050311974746100712 ~2015
5987658701911975317403912 ~2015
5987806610311975613220712 ~2015
5987923820311975847640712 ~2015
5988067403911976134807912 ~2015
5988445621111976891242312 ~2015
5988570229111977140458312 ~2015
5988750526135932503156712 ~2016
Exponent Prime Factor Dig. Year
5988801847111977603694312 ~2015
5989118845959891188459112 ~2017
5989127353111978254706312 ~2015
5989254727111978509454312 ~2015
5989266247111978532494312 ~2015
5989279003111978558006312 ~2015
5989940033911979880067912 ~2015
5990380637911980761275912 ~2015
5990640305911981280611912 ~2015
5991214862311982429724712 ~2015
5991697288135950183728712 ~2016
5991863233111983726466312 ~2015
5991870362311983740724712 ~2015
5992082272747936658181712 ~2017
5992295198311984590396712 ~2015
5992436395111984872790312 ~2015
5992440905911984881811912 ~2015
5992616037735955696226312 ~2016
5993374838311986749676712 ~2015
5993422525735960535154312 ~2016
5993508647911987017295912 ~2015
5993718247735962309486312 ~2016
5993859137911987718275912 ~2015
5993920891111987841782312 ~2015
5993963563147951708504912 ~2017
Exponent Prime Factor Dig. Year
5994010562311988021124712 ~2015
5996006789911992013579912 ~2015
5996633011747973064093712 ~2017
5997080810947976646487312 ~2017
5997108848311994217696712 ~2015
5997537571735985225430312 ~2016
5997847171335987083027912 ~2016
5998305640135989833840712 ~2016
5998607027911997214055912 ~2015
5998866920311997733840712 ~2015
5999152123111998304246312 ~2015
5999865185911999730371912 ~2015
6000439034948003512279312 ~2017
6000532949336003197695912 ~2016
6000655292312001310584712 ~2015
6000798115112001596230312 ~2015
6001090730312002181460712 ~2015
6001241485736007448914312 ~2016
6001256762312002513524712 ~2015
6001298012312002596024712 ~2015
6001431169112002862338312 ~2015
6001861003112003722006312 ~2015
6002357803112004715606312 ~2015
6002520854312005041708712 ~2015
6002678533748021428269712 ~2017
Home
4.724.182 digits
e-mail
25-04-13