Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
372923450997458469019911 ~2014
372924058317458481166311 ~2014
372951795117459035902311 ~2014
372954090837459081816711 ~2014
3729703447722378220686312 ~2015
372971349237459426984711 ~2014
373028208837460564176711 ~2014
373068231117461364622311 ~2014
373077766797461555335911 ~2014
373078149837461562996711 ~2014
373089345837461786916711 ~2014
3730928811137309288111112 ~2015
373104404397462088087911 ~2014
373131294117462625882311 ~2014
373145285997462905719911 ~2014
373163195037463263900711 ~2014
373177282437463545648711 ~2014
373190780037463815600711 ~2014
373200180237464003604711 ~2014
3732094553322392567319912 ~2015
373217753397464355067911 ~2014
373261918917465238378311 ~2014
373277088117465541762311 ~2014
373282457637465649152711 ~2014
373337194917466743898311 ~2014
Exponent Prime Factor Dig. Year
373341742437466834848711 ~2014
373342000317466840006311 ~2014
373350885237467017704711 ~2014
373361951637467239032711 ~2014
373374532917467490658311 ~2014
373375883997467517679911 ~2014
373378707117467574142311 ~2014
3733867781352274148938312 ~2016
373422355317468447106311 ~2014
3734280041352279920578312 ~2016
373433495517468669910311 ~2014
373447733517468954670311 ~2014
373449584997468991699911 ~2014
373464872397469297447911 ~2014
373470535317469410706311 ~2014
3735188665359763018644912 ~2016
373568160717471363214311 ~2014
373642012197472840243911 ~2014
3737013319722422079918312 ~2015
373702157637474043152711 ~2014
373745152197474903043911 ~2014
373757131917475142638311 ~2014
373776394797475527895911 ~2014
373788617397475772347911 ~2014
373791007437475820148711 ~2014
Exponent Prime Factor Dig. Year
3738067780129904542240912 ~2015
373852125237477042504711 ~2014
373857313197477146263911 ~2014
373944408597478888171911 ~2014
373953180311525...75664914 2023
373983231597479664631911 ~2014
374029011117480580222311 ~2014
374038951437480779028711 ~2014
374052777717481055554311 ~2014
3740827193322444963159912 ~2015
374106140637482122812711 ~2014
3741185281729929482253712 ~2015
374131652397482633047911 ~2014
374138742717482774854311 ~2014
3741504294122449025764712 ~2015
374197726197483954523911 ~2014
374201400117484028002311 ~2014
374205116037484102320711 ~2014
3742210951129937687608912 ~2015
374231033637484620672711 ~2014
3742572795137425727951112 ~2015
3742652736737426527367112 ~2015
374282145117485642902311 ~2014
374292258717485845174311 ~2014
3743005447129944043576912 ~2015
Exponent Prime Factor Dig. Year
3743033809359888540948912 ~2016
374328963237486579264711 ~2014
3743475006122460850036712 ~2015
3743565668929948525351312 ~2015
3743657885322461947311912 ~2015
3743686495322462118971912 ~2015
374376300717487526014311 ~2014
374410363317488207266311 ~2014
374443886517488877730311 ~2014
374448672837488973456711 ~2014
374468291637489365832711 ~2014
374483936637489678732711 ~2014
374498967237489979344711 ~2014
3745008552122470051312712 ~2015
374539058037490781160711 ~2014
374603368437492067368711 ~2014
374608887717492177754311 ~2014
374653829637493076592711 ~2014
374669714397493394287911 ~2014
374680333917493606678311 ~2014
3747212544737472125447112 ~2015
3747288430337472884303112 ~2015
3747470782122484824692712 ~2015
374767979517495359590311 ~2014
374777562717495551254311 ~2014
Home
4.828.532 digits
e-mail
25-06-01