Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
379224057717584481154311 ~2014
379275694197585513883911 ~2014
379307609997586152199911 ~2014
379310623917586212478311 ~2014
379310797317586215946311 ~2014
3793671250337936712503112 ~2015
379379495037587589900711 ~2014
379384722597587694451911 ~2014
379392503397587850067911 ~2014
379397148117587942962311 ~2014
3794211244730353689957712 ~2015
379428720597588574411911 ~2014
379432447437588648948711 ~2014
379448994837588979896711 ~2014
3794678179937946781799112 ~2015
379470634437589412688711 ~2014
3794783533722768701202312 ~2015
379480151397589603027911 ~2014
379490635917589812718311 ~2014
379501917717590038354311 ~2014
3795219646130361757168912 ~2015
379544766117590895322311 ~2014
379591457997591829159911 ~2014
379607097237592141944711 ~2014
379614262917592285258311 ~2014
Exponent Prime Factor Dig. Year
379617566997592351339911 ~2014
379625971917592519438311 ~2014
379654852317593097046311 ~2014
379676541717593530834311 ~2014
379680565437593611308711 ~2014
379688856597593777131911 ~2014
379739946597594798931911 ~2014
379747426917594948538311 ~2014
3797512556930380100455312 ~2015
379771175997595423519911 ~2014
379831065717596621314311 ~2014
3798409593760774553499312 ~2016
379842351237596847024711 ~2014
379861188837597223776711 ~2014
379862682237597253644711 ~2014
3798645492760778327883312 ~2016
3798705822737987058227112 ~2015
3798933033137989330331112 ~2015
379909573797598191475911 ~2014
3799621357130396970856912 ~2015
380038977597600779551911 ~2014
3800932195753213050739912 ~2016
380094537717601890754311 ~2014
3801067053160817072849712 ~2016
380111665197602233303911 ~2014
Exponent Prime Factor Dig. Year
380127243015808...73192914 2024
380131850517602637010311 ~2014
380163642837603272856711 ~2014
380167750317603355006311 ~2014
380171260197603425203911 ~2014
380191166997603823339911 ~2014
380193884997603877699911 ~2014
380199336837603986736711 ~2014
380202973917604059478311 ~2014
380205830397604116607911 ~2014
380218297437604365948711 ~2014
380231743797604634875911 ~2014
380232742917604654858311 ~2014
3802540687938025406879112 ~2015
380283366117605667322311 ~2014
380296740717605934814311 ~2014
3803116389722818698338312 ~2015
380311879797606237595911 ~2014
3803125801722818754810312 ~2015
380321833317606436666311 ~2014
380342782917606855658311 ~2014
380352906597607058131911 ~2014
380368382397607367647911 ~2014
380382257637607645152711 ~2014
380393536197607870723911 ~2014
Exponent Prime Factor Dig. Year
380396023437607920468711 ~2014
3804047797722824286786312 ~2015
3804079069130432632552912 ~2015
380427828597608556571911 ~2014
380432924037608658480711 ~2014
380447823117608956462311 ~2014
380500476717610009534311 ~2014
3805128175722830769054312 ~2015
380546892237610937844711 ~2014
380549217117610984342311 ~2014
380550826197611016523911 ~2014
380588367237611767344711 ~2014
380593307637611866152711 ~2014
380599207197611984143911 ~2014
380610289917612205798311 ~2014
380635622637612712452711 ~2014
380636543997612730879911 ~2014
3806418259322838509555912 ~2015
380653707237613074144711 ~2014
380657418597613148371911 ~2014
380665413717613308274311 ~2014
380679242637613584852711 ~2014
380679311997613586239911 ~2014
380681088117613621762311 ~2014
380707960197614159203911 ~2014
Home
4.828.532 digits
e-mail
25-06-01