Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5595296933911190593867912 ~2015
5595705977333574235863912 ~2016
5596028336311192056672712 ~2015
5596038145744768305165712 ~2016
5596106662144768853296912 ~2016
5596141328311192282656712 ~2015
5596177464133577064784712 ~2016
5596372027744770976221712 ~2016
5596748443111193496886312 ~2015
5596791871111193583742312 ~2015
5596821581911193643163912 ~2015
5596828159111193656318312 ~2015
5597021264311194042528712 ~2015
5597152634311194305268712 ~2015
5597177008133583062048712 ~2016
5597859751111195719502312 ~2015
5597958113911195916227912 ~2015
559804907291473...59872915 2025
5598091958311196183916712 ~2015
5598112237111196224474312 ~2015
5598195956311196391912712 ~2015
5598706340311197412680712 ~2015
5598740496133592442976712 ~2016
5599240157911198480315912 ~2015
5599346821111198693642312 ~2015
Exponent Prime Factor Dig. Year
5599385323111198770646312 ~2015
5599478593733596871562312 ~2016
5599852840744798822725712 ~2016
5599916827111199833654312 ~2015
5600075951911200151903912 ~2015
5600083232311200166464712 ~2015
5600685623911201371247912 ~2015
5600735597911201471195912 ~2015
5600875721911201751443912 ~2015
5600893537333605361223912 ~2016
5600964590311201929180712 ~2015
5601059611111202119222312 ~2015
5601273013111202546026312 ~2015
5601386368133608318208712 ~2016
5601430327333608581963912 ~2016
5601492914311202985828712 ~2015
5601651131911203302263912 ~2015
5602268022133613608132712 ~2016
5602728865111205457730312 ~2015
5602848789733617092738312 ~2016
5602992469744823939757712 ~2016
5603110156144824881248912 ~2016
5603252485144826019880912 ~2016
5603343985111206687970312 ~2015
5603653232311207306464712 ~2015
Exponent Prime Factor Dig. Year
5604023960311208047920712 ~2015
5604341845111208683690312 ~2015
5604366554311208733108712 ~2015
5604709049378465926690312 ~2017
5605247980144841983840912 ~2016
5605639685911211279371912 ~2015
5605889963911211779927912 ~2015
5606217221911212434443912 ~2015
5606266379911212532759912 ~2015
5606538260311213076520712 ~2015
5607409099111214818198312 ~2015
5607533569144860268552912 ~2016
5607942422311215884844712 ~2015
5608031645911216063291912 ~2015
5608282171333649693027912 ~2016
5608454653733650727922312 ~2016
5609073184133654439104712 ~2016
5609420425111218840850312 ~2015
5609593525111219187050312 ~2015
5610206483911220412967912 ~2015
5610225902311220451804712 ~2015
5610231980944881855847312 ~2016
5610602407733663614446312 ~2016
5611534067911223068135912 ~2015
5611537692133669226152712 ~2016
Exponent Prime Factor Dig. Year
5612115548311224231096712 ~2015
5612270231911224540463912 ~2015
5612347043333674082259912 ~2016
5612399264311224798528712 ~2015
5612436163956124361639112 ~2017
5612929904311225859808712 ~2015
5613231886744905855093712 ~2016
5613517663111227035326312 ~2015
5613810206311227620412712 ~2015
5613844013911227688027912 ~2015
5614091125111228182250312 ~2015
5614322843911228645687912 ~2015
5614398679744915189437712 ~2016
5614703891911229407783912 ~2015
5614916212744919329701712 ~2016
5615099521333690597127912 ~2016
5615144329111230288658312 ~2015
5615156618311230313236712 ~2015
5615359661333692157967912 ~2016
5616000247111232000494312 ~2015
5616368639911232737279912 ~2015
5616381564133698289384712 ~2016
5617233044311234466088712 ~2015
5617336595911234673191912 ~2015
5617468249111234936498312 ~2015
Home
4.724.182 digits
e-mail
25-04-13