Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5809142224134854853344712 ~2016
5809277034134855662204712 ~2016
5809512036134857072216712 ~2016
5809579589911619159179912 ~2015
5809738627111619477254312 ~2015
5809838779734859032678312 ~2016
5810318155111620636310312 ~2015
5810731040311621462080712 ~2015
5810937920311621875840712 ~2015
5811152053111622304106312 ~2015
5811391022311622782044712 ~2015
5811568031911623136063912 ~2015
5812121939911624243879912 ~2015
5812172575746497380605712 ~2017
5812369361911624738723912 ~2015
5813448260311626896520712 ~2015
5813973464311627946928712 ~2015
5813973800311627947600712 ~2015
5814180200311628360400712 ~2015
581485307231453...68075114 2023
5815252880311630505760712 ~2015
5816462515334898775091912 ~2016
5817204901111634409802312 ~2015
5817287018311634574036712 ~2015
5817384854311634769708712 ~2015
Exponent Prime Factor Dig. Year
5817627661111635255322312 ~2015
5817629033911635258067912 ~2015
5818372049911636744099912 ~2015
5818406276311636812552712 ~2015
5818454047111636908094312 ~2015
5818620902311637241804712 ~2015
5818743905911637487811912 ~2015
5819807102311639614204712 ~2015
5819884123111639768246312 ~2015
5820383723911640767447912 ~2015
5820407269111640814538312 ~2015
5820497495911640994991912 ~2015
5820698663911641397327912 ~2015
5820967633111641935266312 ~2015
5821376083334928256499912 ~2016
5821697040134930182240712 ~2016
5821775091734930650550312 ~2016
5821835282311643670564712 ~2015
5822616236311645232472712 ~2015
5822729065734936374394312 ~2016
5823115454311646230908712 ~2015
5823225115111646450230312 ~2015
5823434449111646868898312 ~2015
5823769358311647538716712 ~2015
5823792578311647585156712 ~2015
Exponent Prime Factor Dig. Year
5823945846758239458467112 ~2017
5824899350311649798700712 ~2015
5824929487111649858974312 ~2015
5824965296946599722375312 ~2017
5825216227111650432454312 ~2015
5825888521111651777042312 ~2015
5825904791911651809583912 ~2015
5826290489334957742935912 ~2016
5826423097958264230979112 ~2017
5826632239111653264478312 ~2015
5827461320311654922640712 ~2015
5827870775911655741551912 ~2015
5827985900311655971800712 ~2015
5828004655111656009310312 ~2015
5828190809911656381619912 ~2015
5828762831911657525663912 ~2015
5828785880311657571760712 ~2015
5828889110311657778220712 ~2015
5829067565911658135131912 ~2015
5829315591734975893550312 ~2016
5829609517111659219034312 ~2015
5829712124311659424248712 ~2015
5829889483111659778966312 ~2015
5830081039111660162078312 ~2015
5830086989911660173979912 ~2015
Exponent Prime Factor Dig. Year
5831189933911662379867912 ~2015
5831802499334990814995912 ~2016
5832371221111664742442312 ~2015
5832670729111665341458312 ~2015
5832772957111665545914312 ~2015
5833408657111666817314312 ~2015
5833506313111667012626312 ~2015
5833522167735001133006312 ~2016
5833635667111667271334312 ~2015
5833685681946669485455312 ~2017
5833797761911667595523912 ~2015
5833959230311667918460712 ~2015
5834029355335004176131912 ~2016
5834050727335004304363912 ~2016
5834167519111668335038312 ~2015
5834471261911668942523912 ~2015
5834986963735009921782312 ~2016
5835303919735011823518312 ~2016
5835725348311671450696712 ~2015
5836594259911673188519912 ~2015
5836870520311673741040712 ~2015
5837145671911674291343912 ~2015
5837257769911674515539912 ~2015
5837475494311674950988712 ~2015
5837629016311675258032712 ~2015
Home
4.724.182 digits
e-mail
25-04-13