Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5781803177911563606355912 ~2015
5782154828311564309656712 ~2015
5782181609911564363219912 ~2015
5782701181111565402362312 ~2015
5782781197111565562394312 ~2015
5782935109111565870218312 ~2015
5783557137734701342826312 ~2016
5783591365111567182730312 ~2015
5783637367111567274734312 ~2015
5783925626311567851252712 ~2015
5784250853946274006831312 ~2017
5784910471111569820942312 ~2015
5784937669111569875338312 ~2015
5785099144746280793157712 ~2017
5785346078311570692156712 ~2015
5785517683111571035366312 ~2015
5786164718311572329436712 ~2015
5786376595111572753190312 ~2015
5786483161111572966322312 ~2015
5786485187911572970375912 ~2015
5786485990357864859903112 ~2017
5786492954311572985908712 ~2015
5786503765111573007530312 ~2015
5787001376311574002752712 ~2015
5787901914757879019147112 ~2017
Exponent Prime Factor Dig. Year
5787967499911575934999912 ~2015
5788205222311576410444712 ~2015
5788281826357882818263112 ~2017
5788375736311576751472712 ~2015
5788698607111577397214312 ~2015
5788759181911577518363912 ~2015
5789403509911578807019912 ~2015
5790140472134740842832712 ~2016
5790162731334740976387912 ~2016
5790318757111580637514312 ~2015
5790346479734742078878312 ~2016
579051216232791...62228714 2023
5790558395911581116791912 ~2015
5790760375146326083000912 ~2017
5790930481111581860962312 ~2015
5791354738146330837904912 ~2017
5791380867734748285206312 ~2016
5791703009946333624079312 ~2017
5792316917911584633835912 ~2015
5792756968134756541808712 ~2016
5792904391111585808782312 ~2015
5793066086311586132172712 ~2015
5793140468311586280936712 ~2015
5793284533111586569066312 ~2015
5793322417111586644834312 ~2015
Exponent Prime Factor Dig. Year
5794214354311588428708712 ~2015
5794972945111589945890312 ~2015
5794989238134769935428712 ~2016
5795219321911590438643912 ~2015
5795646468134773878808712 ~2016
5795667845911591335691912 ~2015
5795988887911591977775912 ~2015
5796456599911592913199912 ~2015
5797427311746379418493712 ~2017
5797616695734785700174312 ~2016
5798108959111596217918312 ~2015
5798633771911597267543912 ~2015
5798698529911597397059912 ~2015
5798975600311597951200712 ~2015
5798987419111597974838312 ~2015
5799083438311598166876712 ~2015
5799208337911598416675912 ~2015
5799481787911598963575912 ~2015
5799520753111599041506312 ~2015
5799913637911599827275912 ~2015
5800279069111600558138312 ~2015
5800954694311601909388712 ~2015
5800957663734805745982312 ~2016
5801436971334808621827912 ~2016
5801860118311603720236712 ~2015
Exponent Prime Factor Dig. Year
5802157823911604315647912 ~2015
5802236378311604472756712 ~2015
5802306293911604612587912 ~2015
5802345841111604691682312 ~2015
5802982548134817895288712 ~2016
5803874353111607748706312 ~2015
5804352625146434821000912 ~2017
5804384207911608768415912 ~2015
5804543197111609086394312 ~2015
5804599331911609198663912 ~2015
5804924908146439399264912 ~2017
5805670081111611340162312 ~2015
5805724704134834348224712 ~2016
5805981380311611962760712 ~2015
5806127912311612255824712 ~2015
5806138709911612277419912 ~2015
5806151093911612302187912 ~2015
5806360040311612720080712 ~2015
580645734074238...58711114 2024
5807054597911614109195912 ~2015
5807501843911615003687912 ~2015
5808170918311616341836712 ~2015
5808304697911616609395912 ~2015
5808305393911616610787912 ~2015
5808862947734853177686312 ~2016
Home
4.724.182 digits
e-mail
25-04-13