Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4053085043932424680351312 ~2015
405327327718106546554311 ~2014
405336266038106725320711 ~2014
405340864198106817283911 ~2014
405342549838106850996711 ~2014
4053742135724322452814312 ~2015
405434901718108698034311 ~2014
405442529518108850590311 ~2014
4054555569140545555691112 ~2016
405564123118111282462311 ~2014
405604701838112094036711 ~2014
4056183031132449464248912 ~2015
405637491118112749822311 ~2014
405638822638112776452711 ~2014
405660607918113212158311 ~2014
405667051318113341026311 ~2014
405670288198113405763911 ~2014
405673801318113476026311 ~2014
405679730038113594600711 ~2014
405695442838113908856711 ~2014
405719079838114381596711 ~2014
405729834598114596691911 ~2014
4057402351940574023519112 ~2016
4057633141724345798850312 ~2015
405768190918115363818311 ~2014
Exponent Prime Factor Dig. Year
4057851631364925626100912 ~2016
4058256363173048614535912 ~2016
4058330930956816633032712 ~2016
405849658918116993178311 ~2014
4058786929724352721578312 ~2015
405883317118117666342311 ~2014
4058890321132471122568912 ~2015
4059092159324354552955912 ~2015
4059101008124354606048712 ~2015
405928238518118564770311 ~2014
405929844838118596896711 ~2014
405941215918118824318311 ~2014
4059448855324356693131912 ~2015
405959664238119193284711 ~2014
406009865398120197307911 ~2014
406018815718120376314311 ~2014
406022144038120442880711 ~2014
406087080838121741616711 ~2014
406104626038122092520711 ~2014
4061244518932489956151312 ~2015
406124520118122490402311 ~2014
406127338798122546775911 ~2014
406147195318122943906311 ~2014
4061701226956863817176712 ~2016
4061880734932495045879312 ~2015
Exponent Prime Factor Dig. Year
4061926433932495411471312 ~2015
406215036238124300724711 ~2014
406247841718124956834311 ~2014
4062897995932503183967312 ~2015
406305132771560...09836914 2023
406327656238126553124711 ~2014
4063385349724380312098312 ~2015
406360999798127219995911 ~2014
4063803193324382819159912 ~2015
406384662598127693251911 ~2014
406385670238127713404711 ~2014
406426741198128534823911 ~2014
406442247118128844942311 ~2014
4064441033324386646199912 ~2015
406446685798128933715911 ~2014
4064831059724388986358312 ~2015
406484869198129697383911 ~2014
406489319518129786390311 ~2014
406505794798130115895911 ~2014
406552340038131046800711 ~2014
4066102099324396612595912 ~2015
406622668318132453366311 ~2014
4066434786124398608716712 ~2015
406665701518133314030311 ~2014
4067016460340670164603112 ~2016
Exponent Prime Factor Dig. Year
4067246689324403480135912 ~2015
406792404718135848094311 ~2014
406802647318136052946311 ~2014
4068199579724409197478312 ~2015
4068394362765094309803312 ~2016
4068560905132548487240912 ~2015
406898551798137971035911 ~2014
406898774638137975492711 ~2014
4069428178732555425429712 ~2015
406951535998139030719911 ~2014
406955209198139104183911 ~2014
406967362318139347246311 ~2014
406985075998139701519911 ~2014
407024847238140496944711 ~2014
407037599518140751990311 ~2014
4070401632124422409792712 ~2015
407043625198140872503911 ~2014
4071140839940711408399112 ~2016
4071149831324426898987912 ~2015
4071287449365140599188912 ~2016
407131926238142638524711 ~2014
407149162198142983243911 ~2014
407153074438143061488711 ~2014
407153501038143070020711 ~2014
4071587270932572698167312 ~2015
Home
4.828.532 digits
e-mail
25-06-01