Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6228752315912457504631912 ~2015
6228817415912457634831912 ~2015
6229118113112458236226312 ~2015
6229758211112459516422312 ~2015
6230192597912460385195912 ~2015
6230215388312460430776712 ~2015
6230536109912461072219912 ~2015
6231013931912462027863912 ~2015
6231014105912462028211912 ~2015
6231645655112463291310312 ~2015
6231904304312463808608712 ~2015
6231954506312463909012712 ~2015
6233469767912466939535912 ~2015
6233804054312467608108712 ~2015
6233898905912467797811912 ~2015
6234121979912468243959912 ~2015
6234258250149874066000912 ~2017
6234286980762342869807112 ~2017
623433239411783...64712714 2024
6234457154312468914308712 ~2015
6235017344312470034688712 ~2015
6235090582149880724656912 ~2017
6235971943112471943886312 ~2015
623723466432806...98935114 2023
6237342649112474685298312 ~2015
Exponent Prime Factor Dig. Year
6237579257912475158515912 ~2015
6237597383912475194767912 ~2015
6237602671149900821368912 ~2017
6237637933737425827602312 ~2016
6237704000312475408000712 ~2015
6237830255912475660511912 ~2015
623787069474453...76015914 2024
6237885601337427313607912 ~2016
6238161799962381617999112 ~2017
6238248365912476496731912 ~2015
6238281563912476563127912 ~2015
6238347805112476695610312 ~2015
6238411409912476822819912 ~2015
6238573612137431441672712 ~2016
6238758482312477516964712 ~2015
6239365791737436194750312 ~2016
6239431834149915454672912 ~2017
6239499337112478998674312 ~2015
6239640709112479281418312 ~2015
6239666069912479332139912 ~2015
6240214183112480428366312 ~2015
6240338192312480676384712 ~2015
6240447000137442682000712 ~2016
6240781615112481563230312 ~2015
6241214744312482429488712 ~2015
Exponent Prime Factor Dig. Year
6241407111737448442670312 ~2016
6242125261112484250522312 ~2015
6242481313112484962626312 ~2015
6242822458362428224583112 ~2017
6243421619912486843239912 ~2015
6243581119749948648957712 ~2017
6243723715112487447430312 ~2015
6244181405912488362811912 ~2015
6244713428312489426856712 ~2015
6244967180312489934360712 ~2015
6245067283149960538264912 ~2017
6245166367112490332734312 ~2015
6245585018312491170036712 ~2015
6245817280137474903680712 ~2016
6246283909112492567818312 ~2015
6246655124312493310248712 ~2015
6246720724749973765797712 ~2017
6247040795912494081591912 ~2015
6247314914312494629828712 ~2015
6247352840949978822727312 ~2017
6247885273112495770546312 ~2015
6248324125149986593000912 ~2017
6248409497912496818995912 ~2015
6248804864312497609728712 ~2015
6248849947112497699894312 ~2015
Exponent Prime Factor Dig. Year
6248989988312497979976712 ~2015
6249367070312498734140712 ~2015
6249416783912498833567912 ~2015
6249472273337496833639912 ~2016
6249567679112499135358312 ~2015
6249739357737498436146312 ~2016
6250241036312500482072712 ~2015
6250330987112500661974312 ~2015
6250406693912500813387912 ~2015
6250587175112501174350312 ~2015
6250756699112501513398312 ~2015
6250782322137504693932712 ~2016
6251322559112502645118312 ~2015
6251495947112502991894312 ~2015
6251548237112503096474312 ~2015
6251724382137510346292712 ~2016
6251927069912503854139912 ~2015
6252105235112504210470312 ~2015
6252205751912504411503912 ~2015
6253885673912507771347912 ~2015
6253949042312507898084712 ~2015
6254441926150035535408912 ~2017
6254544809912509089619912 ~2015
6254602406312509204812712 ~2015
6254827217912509654435912 ~2015
Home
4.724.182 digits
e-mail
25-04-13