Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4575085710127450514260712 ~2015
457540928999150818579911 ~2014
457543395839150867916711 ~2014
457559153477842...90475914 2025
457568239919151364798311 ~2014
4575791822936606334583312 ~2016
4575835212745758352127112 ~2016
457591263239151825264711 ~2014
457597163399151943267911 ~2014
457666713239153334264711 ~2014
457673046599153460931911 ~2014
457689046319153780926311 ~2014
457695834599153916691911 ~2014
4577079629327462477775912 ~2015
457715506799154310135911 ~2014
4577814384127466886304712 ~2015
457789628519155792570311 ~2014
457806348599156126971911 ~2014
457856492519157129850311 ~2014
457885038119157700762311 ~2014
457885879919157717598311 ~2014
457925137319158502746311 ~2014
4580286862373284589796912 ~2016
458047706999160954139911 ~2014
458069685839161393716711 ~2014
Exponent Prime Factor Dig. Year
458083544639161670892711 ~2014
458097828839161956576711 ~2014
458105721239162114424711 ~2014
458126808119162536162311 ~2014
458153801399163076027911 ~2014
458161062119163221242311 ~2014
4581867622127491205732712 ~2015
458193585839163871716711 ~2014
458201090639164021812711 ~2014
458209560599164191211911 ~2014
458276523239165530464711 ~2014
458351171999167023439911 ~2014
458364765612420...62420914 2024
458385227399167704547911 ~2014
458398573799167971475911 ~2014
458416979639168339592711 ~2014
458429592239168591844711 ~2014
458436045719168720914311 ~2014
458440074839168801496711 ~2014
458451401639169028032711 ~2014
458458438199169168763911 ~2014
458472429239169448584711 ~2014
458482077119169641542311 ~2014
458514436799170288735911 ~2014
458528357519170567150311 ~2014
Exponent Prime Factor Dig. Year
458560667999171213359911 ~2014
458572926719171458534311 ~2014
458594005799171880115911 ~2014
458669876519173397530311 ~2014
458701495199174029903911 ~2014
458737605119174752102311 ~2014
458751456119175029122311 ~2014
4587535966736700287733712 ~2016
458770597319175411946311 ~2014
4587994610936703956887312 ~2016
4588524769736708198157712 ~2016
458868656996827...16011314 2023
458899213319177984266311 ~2014
458906228399178124567911 ~2014
458918533919178370678311 ~2014
458937037439178740748711 ~2014
4589578732373433259716912 ~2016
458975351999179507039911 ~2014
459000454919180009098311 ~2014
459063256319181265126311 ~2014
459095916599181918331911 ~2014
459099296039181985920711 ~2014
4591028449327546170695912 ~2015
459109232639182184652711 ~2014
4591528290127549169740712 ~2015
Exponent Prime Factor Dig. Year
4591568222936732545783312 ~2016
459160794839183215896711 ~2014
459174086399183481727911 ~2014
459179678999183593579911 ~2014
459205959239184119184711 ~2014
459247588573517...28446314 2023
4592662069945926620699112 ~2016
459295494119185909882311 ~2014
459343154039186863080711 ~2014
459343578239186871564711 ~2014
459365926319187318526311 ~2014
4593677119136749416952912 ~2016
4593740604127562443624712 ~2015
459400848719188016974311 ~2014
4594066471736752531773712 ~2016
459414101999188282039911 ~2014
459416588391871...11008715 2023
459423432839188468656711 ~2014
459456645599189132911911 ~2014
4594990320127569941920712 ~2015
4595034719327570208315912 ~2015
4595287363327571724179912 ~2015
4595428531727572571190312 ~2015
4596147472345961474723112 ~2016
4596488338373543813412912 ~2016
Home
4.724.182 digits
e-mail
25-04-13