Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6486218701112972437402312 ~2015
6486716917738920301506312 ~2017
648675028791200...32615115 2025
6487015871912974031743912 ~2015
6487493441912974986883912 ~2015
6487720159112975440318312 ~2015
6488084671112976169342312 ~2015
6489071513912978143027912 ~2015
6489811583912979623167912 ~2015
6489900815912979801631912 ~2015
6490885474138945312844712 ~2017
6491070449912982140899912 ~2015
6491118209951928945679312 ~2017
6491280482312982560964712 ~2015
6491806639751934453117712 ~2017
6491962889912983925779912 ~2015
6492350156312984700312712 ~2015
6492427796312984855592712 ~2015
6492805076312985610152712 ~2015
6493662380312987324760712 ~2015
6493879105112987758210312 ~2015
6493884431912987768863912 ~2015
6494468480312988936960712 ~2015
6494688409112989376818312 ~2015
6495373760312990747520712 ~2015
Exponent Prime Factor Dig. Year
6495396380312990792760712 ~2015
6495451974138972711844712 ~2017
6495502128138973012768712 ~2017
6495626124138973756744712 ~2017
6495655547912991311095912 ~2015
6495950639912991901279912 ~2015
6496022719112992045438312 ~2015
6496097021912992194043912 ~2015
6497169157338983014943912 ~2017
6497417420312994834840712 ~2015
6498379071738990274430312 ~2017
6498906961112997813922312 ~2015
6498999695912997999391912 ~2015
6499120799912998241599912 ~2015
6499671343751997370749712 ~2017
6500480825913000961651912 ~2015
650052588372327...66364714 2023
6500643706139003862236712 ~2017
6500700503913001401007912 ~2015
6500882743113001765486312 ~2015
6501052859339006317155912 ~2017
6501085559913002171119912 ~2015
6501251333913002502667912 ~2015
6501422983113002845966312 ~2015
6501686639913003373279912 ~2015
Exponent Prime Factor Dig. Year
6501801551913003603103912 ~2015
6501890126313003780252712 ~2015
6501916703913003833407912 ~2015
6502077626313004155252712 ~2015
6502300889913004601779912 ~2015
6502303424313004606848712 ~2015
6502624028313005248056712 ~2015
6502715891913005431783912 ~2015
6503469875913006939751912 ~2015
6503852173113007704346312 ~2015
6504189425913008378851912 ~2015
6504663346139027980076712 ~2017
6505182247113010364494312 ~2015
6505586165913011172331912 ~2015
6505990651113011981302312 ~2015
6506193070152049544560912 ~2017
6506413880313012827760712 ~2015
6506425756139038554536712 ~2017
6506434940313012869880712 ~2015
6506580818313013161636712 ~2015
6506659762152053278096912 ~2017
6507363012139044178072712 ~2017
6507450038313014900076712 ~2015
6507973067952063784543312 ~2017
6508179512313016359024712 ~2015
Exponent Prime Factor Dig. Year
6508330988313016661976712 ~2015
6508643057339051858343912 ~2017
6508727528313017455056712 ~2015
6508767192139052603152712 ~2017
6509178860313018357720712 ~2015
6509850557913019701115912 ~2015
6510078533913020157067912 ~2015
6511157639913022315279912 ~2015
6511318910952090551287312 ~2017
6511618583913023237167912 ~2015
6511662162139069972972712 ~2017
6511966969113023933938312 ~2015
6512006456313024012912712 ~2015
6512277376139073664256712 ~2017
6512362597113024725194312 ~2015
6512439547152099516376912 ~2017
6512488237739074929426312 ~2017
6512841374313025682748712 ~2015
6512939918313025879836712 ~2015
6513391084752107128677712 ~2017
6514758283339088549699912 ~2017
6514916636313029833272712 ~2015
6514997522313029995044712 ~2015
6515257021339091542127912 ~2017
6515261072313030522144712 ~2015
Home
4.724.182 digits
e-mail
25-04-13